-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
118 lines (112 loc) · 5.69 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="PyTorch Training")
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
help='model architecture (default: resnet50)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--test_all', action='store_true',
help='Run all validation set (default: will run 5k test samples from RobustBench)')
parser.add_argument('-c', '--corruption', action='store_true',
help='Corruptions to be used for test set evaluations')
parser.add_argument('--augmentation', default="standard", type=str,
help='augmentation type')
parser.add_argument('--dir', default='/data/', type=str, metavar='DIR',
help='Path to dataset ')
parser.add_argument('--mixing_set', default='/data/fractals_and_fvis/', type=str, metavar='DIR',
help='Path to mixing set')
parser.add_argument('--batch_size', default=1, type=int, metavar='N',
help='Evaluation mini-batch size (default: 1)')
parser.add_argument('--path', default=None, type=str, metavar='PATH',
help='Path for trained model checkpoint to load')
parser.add_argument('--seed', default=42, type=int, metavar='N',
help='Randomization seed number (default: 42)')
parser.add_argument('--prune', action='store_true',
help='Prune given model')
parser.add_argument('--pruning_ratio', default=0, type=float, metavar='N',
help='Pruning Ratio to prune model')
parser.add_argument('--pruning_type', default='global', type=str,
help='Pruning type: "global", "local"')
parser.add_argument('--model_name', default=None, type=str,
help='Save Model filename location')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument("--optimizer", type=str, default="sgd",
choices=("sgd", "adam", "rmsprop"))
parser.add_argument("--warmup-epochs", type=int, default=0,
help="Number of warmup epochs")
parser.add_argument("--num-classes", type=int, default=1000,
help="Number of output classes in the model")
parser.add_argument("--resume", type=str, default="",
help="path to latest checkpoint (default:None)")
parser.add_argument( "--lr-schedule", type=str, default="cosine", choices=("step", "cosine"),
help="Learning rate schedule")
# PixMix arguments
parser.add_argument('--aug-severity', default=1, type=int,
help='Severity of base augmentation operators')
parser.add_argument( '--beta', default=4, type=int,
help='Severity of mixing')
parser.add_argument('--k_mixing', default=4,type=int,
help='Mixing iterations')
parser.add_argument('--all-ops', '--all', action='store_true', default=True,
help='Turn on all augmentation operations (+brightness,contrast,color,sharpness).')
# CutOut arguments
parser.add_argument('--cutout_length', default=56, type=int, metavar='N',
help='length of hole (usually half of dim)')
#Score Based Pruning
parser.add_argument(
"--layer-type", type=str, choices=("dense", "subnet"), help="dense | subnet"
)
parser.add_argument(
"--scaled-score-init",
action="store_true",
default=False,
help="Init importance scores proportaional to weights (default kaiming init)",
)
parser.add_argument(
"--exp-mode",
type=str,
choices=("pretrain", "prune", "finetune"),
default="prune",
help="Train networks following one of these methods.",
)
parser.add_argument(
"--freeze-bn",
action="store_true",
default=False,
help="freeze batch-norm parameters in pruning",
)
parser.add_argument(
"--scores_init_type",
choices=("kaiming_normal", "kaiming_uniform", "xavier_uniform", "xavier_normal", "weight_magnitude"),
help="Which init to use for relevance scores",
)
parser.add_argument(
"--init_type",
choices=("kaiming_normal", "kaiming_uniform", "signed_const"),
help="Which init to use for weight parameters: kaiming_normal | kaiming_uniform | signed_const",
)
parser.add_argument(
"--k",
type=float,
default=1.0,
help="Fraction of weight variables kept in subnet",
)
parser.add_argument(
"--save-dense",
action="store_true",
default=False,
help="Save dense model alongwith subnets.",
)
return parser.parse_args()