-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmcts.py
162 lines (142 loc) · 4.59 KB
/
mcts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import configparser
from datetime import datetime
from types import SimpleNamespace
from .actions import SimpleActions
from .env import RFEnv
from .mcts_utils import mcts_trial
from .sensor import Drone
from .state import RFState
from .utils import Results
def run_mcts(
env, config=None, fig=None, ax=None, global_start_time=None, mcts_defaults={}
):
"""Function to run Monte Carlo Tree Search
Parameters
----------
env : object
Environment definitions
config : object
Config object which must have following:
simulations : int
Number of simulations
DEPTH : int
Tree depth
lambda_arg : float
Lambda value
num_runs : int
Number of runs
iterations : int
Number of iterations
COLLISION_REWARD : float
Reward value for collision
LOSS_REWARD : float
Reward value for loss function
plotting : bool
Flag to plot or not
------------
fig : object
Figure object
ax : object
Axis object
"""
if config is None:
config = SimpleNamespace(**mcts_defaults)
simulations = config.simulations
DEPTH = config.depth
num_runs = config.trials
iterations = config.iterations
plotting = config.plotting
# Results instance for saving results to file
results = Results(
experiment_name="mcts",
global_start_time=global_start_time,
num_iters=num_runs,
plotting=plotting,
config=config,
)
run_data = []
# trials
mcts_loss = 0
mcts_coll = 0
for i in range(1, num_runs + 1):
run_start_time = datetime.now()
result = mcts_trial(
env,
iterations,
DEPTH,
20,
plotting,
simulations,
fig=fig,
ax=ax,
results=results,
)
run_time = datetime.now() - run_start_time
run_data.append([datetime.now(), run_time] + result[1:])
# mcts_coll = result[6][-1]/iterations
# mcts_loss = result[7][-1]/iterations
mcts_coll = result[6][-1]
mcts_loss = result[7][-1]
print(".")
print("\n==============================")
print(f"Runs: {i}")
print(f"SIMULATIONS: {simulations}")
print(f"MCTS Depth {DEPTH} Results")
print(f"Collision Rate: {mcts_coll/i}")
print(f"Loss Rate: {mcts_loss/i}")
print("==============================")
# Saving results to CSV file
results.write_dataframe(run_data=run_data)
if results.plotting:
results.save_gif(i)
def mcts(args=None, env=None, mcts_defaults={}):
# Grab mcts specific defaults
defaults = mcts_defaults
config = None
if args:
config = configparser.ConfigParser(defaults) # pytype: disable=wrong-arg-types
config.read_dict({section: dict(args[section]) for section in args.sections()})
defaults = dict(config.items("Defaults"))
# Fix for boolean args
defaults["plotting"] = config.getboolean("Defaults", "plotting")
parser = argparse.ArgumentParser(
description="Monte Carlo Tree Search",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.set_defaults(**defaults)
parser.add_argument("--lambda_arg", type=float, help="Lambda value")
parser.add_argument("--collision", type=float, help="Reward value for collision")
parser.add_argument("--loss", type=float, help="Reward value for loss function")
parser.add_argument("--depth", type=float, help="Tree depth")
parser.add_argument("--simulations", type=int, help="Number of simulations")
parser.add_argument("--plotting", type=bool, help="Flag to plot or not")
parser.add_argument("--trials", type=int, help="Number of runs")
parser.add_argument("--iterations", type=int, help="Number of iterations")
args, _ = parser.parse_known_args()
if not env:
# Setup environment
actions = SimpleActions()
sensor = Drone()
state = RFState()
env = RFEnv(sensor, actions, state)
global_start_time = datetime.utcnow().timestamp()
run_mcts(
env=env,
config=args,
global_start_time=global_start_time,
mcts_defaults=mcts_defaults,
)
if __name__ == "__main__": # pragma: no cover
# Default MCTS inputs
mcts_defaults = {
"lambda_arg": 0.8,
"collision": -2.0,
"loss": -2.0,
"depth": 10,
"simulations": 500,
"plotting": False,
"trials": 100,
"iterations": 500,
}
mcts(mcts_defaults=mcts_defaults)