@@ -52,7 +52,7 @@ and 3 edge(s):
52
52
3 => 4
53
53
54
54
with vertex data:
55
- 4 - element Dictionaries . Dictionary{Int64, Any}
55
+ 4 - element Dictionary{Int64, Any}
56
56
1 │ ((dim= 2 | id= 739 | " 1,2" ),)
57
57
2 │ ((dim= 2 | id= 739 | " 1,2" ), (dim= 2 | id= 920 | " 2,3" ))
58
58
3 │ ((dim= 2 | id= 920 | " 2,3" ), (dim= 2 | id= 761 | " 3,4" ))
@@ -104,7 +104,7 @@ and 4 edge(s):
104
104
(1 , 2 ) => (2 , 2 )
105
105
106
106
with vertex data:
107
- 4 - element Dictionaries . Dictionary{Tuple{Int64, Int64}, Any}
107
+ 4 - element Dictionary{Tuple{Int64, Int64}, Any}
108
108
(1 , 1 ) │ ((dim= 2 | id= 712 | " 1×1,2×1" ), (dim= 2 | id= 598 | " 1×1,1×2" ))
109
109
(2 , 1 ) │ ((dim= 2 | id= 712 | " 1×1,2×1" ), (dim= 2 | id= 457 | " 2×1,2×2" ))
110
110
(1 , 2 ) │ ((dim= 2 | id= 598 | " 1×1,1×2" ), (dim= 2 | id= 683 | " 1×2,2×2" ))
@@ -134,7 +134,7 @@ and 1 edge(s):
134
134
(1 , 1 ) => (1 , 2 )
135
135
136
136
with vertex data:
137
- 2 - element Dictionaries . Dictionary{Tuple{Int64, Int64}, Any}
137
+ 2 - element Dictionary{Tuple{Int64, Int64}, Any}
138
138
(1 , 1 ) │ ((dim= 2 | id= 712 | " 1×1,2×1" ), (dim= 2 | id= 598 | " 1×1,1×2" ))
139
139
(1 , 2 ) │ ((dim= 2 | id= 598 | " 1×1,1×2" ), (dim= 2 | id= 683 | " 1×2,2×2" ))
140
140
@@ -148,7 +148,7 @@ and 1 edge(s):
148
148
(2 , 1 ) => (2 , 2 )
149
149
150
150
with vertex data:
151
- 2 - element Dictionaries . Dictionary{Tuple{Int64, Int64}, Any}
151
+ 2 - element Dictionary{Tuple{Int64, Int64}, Any}
152
152
(2 , 1 ) │ ((dim= 2 | id= 712 | " 1×1,2×1" ), (dim= 2 | id= 457 | " 2×1,2×2" ))
153
153
(2 , 2 ) │ ((dim= 2 | id= 457 | " 2×1,2×2" ), (dim= 2 | id= 683 | " 1×2,2×2" ))
154
154
```
@@ -164,7 +164,7 @@ julia> using ITensorNetworks: ⊗, contract, contraction_sequence
164
164
julia> using ITensorUnicodePlots: @visualize
165
165
166
166
julia> s = siteinds (" S=1/2" , named_grid (3 ))
167
- ITensorNetworks . IndsNetwork{Int64, ITensors . Index} with 3 vertices:
167
+ IndsNetwork{Int64, Index} with 3 vertices:
168
168
3 - element Vector{Int64}:
169
169
1
170
170
2
@@ -175,13 +175,13 @@ and 2 edge(s):
175
175
2 => 3
176
176
177
177
with vertex data:
178
- 3 - element Dictionaries . Dictionary{Int64, Vector{ITensors . Index}}
179
- 1 │ ITensors . Index[(dim= 2 | id= 830 | " S=1/2,Site,n=1" )]
180
- 2 │ ITensors . Index[(dim= 2 | id= 369 | " S=1/2,Site,n=2" )]
181
- 3 │ ITensors . Index[(dim= 2 | id= 558 | " S=1/2,Site,n=3" )]
178
+ 3 - element Dictionary{Int64, Vector{Index}}
179
+ 1 │ Index[(dim= 2 | id= 830 | " S=1/2,Site,n=1" )]
180
+ 2 │ Index[(dim= 2 | id= 369 | " S=1/2,Site,n=2" )]
181
+ 3 │ Index[(dim= 2 | id= 558 | " S=1/2,Site,n=3" )]
182
182
183
183
and edge data:
184
- 0 - element Dictionaries . Dictionary{NamedGraphs . NamedEdge{Int64}, Vector{ITensors . Index}}
184
+ 0 - element Dictionary{NamedEdge{Int64}, Vector{Index}}
185
185
186
186
julia> tn1 = ITensorNetwork (s; link_space= 2 )
187
187
ITensorNetwork{Int64} with 3 vertices:
@@ -195,7 +195,7 @@ and 2 edge(s):
195
195
2 => 3
196
196
197
197
with vertex data:
198
- 3 - element Dictionaries . Dictionary{Int64, Any}
198
+ 3 - element Dictionary{Int64, Any}
199
199
1 │ ((dim= 2 | id= 830 | " S=1/2,Site,n=1" ), (dim= 2 | id= 186 | " 1,2" ))
200
200
2 │ ((dim= 2 | id= 369 | " S=1/2,Site,n=2" ), (dim= 2 | id= 186 | " 1,2" ), (dim= 2 | id= 430 | " 2,3…
201
201
3 │ ((dim=2|id=558|" S= 1 / 2 ,Site,n= 3 " ), (dim=2|id=430|" 2 ,3 " ))
@@ -212,7 +212,7 @@ and 2 edge(s):
212
212
2 => 3
213
213
214
214
with vertex data:
215
- 3-element Dictionaries. Dictionary{Int64, Any}
215
+ 3-element Dictionary{Int64, Any}
216
216
1 │ ((dim=2|id=830|" S= 1 / 2 ,Site,n= 1 " ), (dim=2|id=994|" 1 ,2 " ))
217
217
2 │ ((dim=2|id=369|" S= 1 / 2 ,Site,n= 2 " ), (dim=2|id=994|" 1 ,2 " ), (dim=2|id=978|" 2 ,3 …
218
218
3 │ ((dim= 2 | id= 558 | " S=1/2,Site,n=3" ), (dim= 2 | id= 978 | " 2,3" ))
@@ -293,8 +293,8 @@ julia> @visualize Z;
293
293
294
294
julia> contraction_sequence (Z)
295
295
2 - element Vector{Vector}:
296
- NamedGraphs . Key{Tuple{Int64, Int64}}[Key ((1 , 1 )), Key ((1 , 2 ))]
297
- Any[Key ((2 , 1 )), Any[Key ((2 , 2 )), NamedGraphs . Key{Tuple{Int64, Int64}}[Key ((3 , 1 )), Key ((3 , 2 ))]]]
296
+ Key{Tuple{Int64, Int64}}[Key ((1 , 1 )), Key ((1 , 2 ))]
297
+ Any[Key ((2 , 1 )), Any[Key ((2 , 2 )), Key{Tuple{Int64, Int64}}[Key ((3 , 1 )), Key ((3 , 2 ))]]]
298
298
299
299
julia> Z̃ = contract (Z, (1 , 1 ) => (2 , 1 ));
300
300
0 commit comments