-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresult_reader.py
295 lines (248 loc) · 10.2 KB
/
result_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from .utils import JsonFile
from pathlib import Path
from typing import Union, Iterable, Literal, Sequence, overload, Callable
import numpy as np
import math
class TaskFolder:
circul_area_to_dia = staticmethod(lambda area: math.sqrt(area * 4 / math.pi))
def __init__(self, folder_path: Union[str, Path]) -> None:
self.path_root: Path = Path(folder_path).absolute()
self.__cache_data = {}
def __str__(self) -> str:
return str(self.path_root.name)
@staticmethod
def axis_angle2rotation_matrix(axis_vector: np.ndarray, left: bool = False):
"""
将「轴角」转换为「旋转矩阵」
Parameters
---
axis_vector : np.ndarray
代表转动量在x, y, z上的分量, 其模长即为转角(弧度制)
left : bool, default = False
是否使用左手系(伸出拇指, 握紧四指时, 拇指为向量方向, 四指为转动方向)
Note
---
公式来源:
- [三维旋转:欧拉角、四元数、旋转矩阵、轴角之间的转换](https://zhuanlan.zhihu.com/p/45404840)
- [机器人正运动学---姿态描述之轴角(旋转向量)](https://blog.csdn.net/hitgavin/article/details/106713290)
"""
modulus = np.linalg.norm(axis_vector, 2) # 模长, 即为转动角度
if modulus == 0:
return np.eye(3)
angle = modulus if left else -modulus
cos_a = np.cos(angle)
sin_a = np.sin(angle)
x, y, z = axis_vector / modulus
return np.array(
[
[
(1 - cos_a) * x**2 + cos_a,
(1 - cos_a) * x * y - z * sin_a,
(1 - cos_a) * x * z + y * sin_a,
],
[
(1 - cos_a) * x * y + z * sin_a,
(1 - cos_a) * y**2 + cos_a,
(1 - cos_a) * y * z - x * sin_a,
],
[
(1 - cos_a) * x * z - y * sin_a,
(1 - cos_a) * y * z + x * sin_a,
(1 - cos_a) * z**2 + cos_a,
],
]
)
def get_endpoint_displacement(
self, x: float = 0.5, y: float = 1, end: Literal["top", "bottom"] = "top"
) -> dict:
"""
在柱端刚性面上, 导出一个点的位移数据
Parameters
---
x, y : float
在柱端刚性面上建立局部直角坐标系
- 以z轴与刚性面的交点为原点
- 整体坐标系的x, y方向即为局部坐标系的x, y方向
- 以端面宽, 高作为x, y的单位长度
end : {"top", "bottom"}
端面选择
Returns
---
referpoint_displacement : dict
拥有("U1", "U2", "U3", "UR1", "UR2", "UR3", "time")作为key
"""
rp = self.task_params["referpoint"]
referpoint = np.array(rp[end]["position"])
end_z = self.z_len * (0 if end == "bottom" else 1)
target_point = np.array((self.x_len * x, self.y_len * y, end_z))
referpoint_displacement = (
self.odb_extract["top_referpoint"]
if end == "top"
else self.odb_extract["bottom_referpoint"]
)
key_table = ("U1", "U2", "U3", "UR1", "UR2", "UR3")
target_displacement_data = {i: [] for i in key_table}
target_displacement_data["time"] = referpoint_displacement["time"]
to_target = target_point - referpoint
for u1, u2, u3, ur1, ur2, ur3 in zip(
*(referpoint_displacement[i] for i in key_table)
):
rotate_matrix = self.axis_angle2rotation_matrix(np.array([ur1, ur2, ur3]))
displace_to_target = to_target @ rotate_matrix
target_displacement = [
*(displace_to_target - to_target + np.array((u1, u2, u3))),
ur1,
ur2,
ur3,
]
for k, v in zip(key_table, target_displacement):
target_displacement_data[k].append(v)
return target_displacement_data
def clean_cache(self, key=None):
if key is None:
self.__cache_data.clear()
else:
self.__cache_data.pop(key)
@property
def path_status(self) -> Path:
return self.path_root / "task_status.json"
@property
def path_taskparams(self) -> Path:
return self.path_root / "task_params.json"
@property
def path_comments(self) -> Path:
return self.path_root / "comments.json"
@property
def path_results(self) -> Path:
return self.path_root / "results"
@property
def path_odb_extract(self) -> Path:
return self.path_results / "odb_extract.json"
@property
def status(self) -> dict:
key = "status"
if key not in self.__cache_data:
self.__cache_data[key] = JsonFile.load(self.path_status)
return self.__cache_data[key]
@property
def raw_task_params(self) -> dict:
key = "raw_task_params"
if key not in self.__cache_data:
self.__cache_data[key] = JsonFile.load(self.path_taskparams)
return self.__cache_data[key]
@property
def task_params(self) -> dict:
return self.raw_task_params["task_params"]
@property
def user_params(self) -> dict:
return self.raw_task_params["user_params"]
@property
def task_params_abstract_1(self) -> dict:
key = "task_params_abstract_1"
if key not in self.__cache_data:
self.__cache_data[key] = {
"concrete": self.user_params["material_concrete"]["grade"],
"tubelar": self.user_params["material_tubelar"]["grade"],
"rod": self.user_params["material_rod"]["grade"],
"pole": self.user_params["material_pole"]["grade"],
"width": self.x_len,
"high": self.y_len,
"length": self.z_len,
"tubelar_thickness": self.user_params["geometry"]["tubelar_thickness"],
"e": (
self.user_params["referpoint_top"]["position"][1] / self.y_len
- 1 / 2
),
"pattern_rod": self.user_params["rod_pattern"]["pattern_rod"],
"pattern_pole": self.user_params["rod_pattern"]["pattern_pole"],
"rod_dia": self.circul_area_to_dia(
self.user_params["rod_pattern"]["area_rod"]
),
"rod2_dia": self.circul_area_to_dia(
self.user_params["rod_pattern"]["area_rod"] / 2
),
"pole_dia": self.circul_area_to_dia(
self.user_params["rod_pattern"]["area_pole"]
),
"layer_spacing": self.user_params["rod_pattern"]["layer_spacing"],
"name": self.user_params["meta"]["taskname"],
"comments": self.user_params["comments"],
}
return self.__cache_data[key]
@property
def x_len(self) -> float:
return self.task_params["geometry"]["x_len"]
@property
def y_len(self) -> float:
return self.task_params["geometry"]["y_len"]
@property
def z_len(self) -> float:
return self.task_params["geometry"]["z_len"]
@property
def comments(self) -> dict:
if "comments" not in self.__cache_data:
self.__cache_data["comments"] = JsonFile.load(self.path_comments)
return self.__cache_data["comments"]
@property
def odb_extract(self) -> dict:
if "odb_extract" not in self.__cache_data:
self.__cache_data["odb_extract"] = JsonFile.load(self.path_odb_extract)
return self.__cache_data["odb_extract"]
@property
def is_done(self) -> bool:
if not self.path_status.exists():
return False
if not isinstance(self.status["extracted"], (int, float)):
return False
return True
class TaskFolderList(list):
def __init__(self, item: Union[Iterable[TaskFolder], str, Path] = None):
if isinstance(item, (str, Path)):
path = Path(item).absolute()
def istask(path: Path):
if not path.is_dir():
return False
if not (path / "task_params.json"):
return False
return True
return super().__init__(TaskFolder(i) for i in path.iterdir() if istask(i))
elif isinstance(item, Iterable):
super().__init__(item)
elif item is None:
super().__init__()
else:
raise TypeError(type(item))
def __str__(self) -> str:
return "TaskFolderList(" + ", ".join(str(i) for i in self) + ")"
@overload
def __getitem__(self, __i: int) -> TaskFolder:
...
@overload
def __getitem__(self, __name: str) -> TaskFolder:
...
@overload
def __getitem__(self, __s: slice) -> Sequence[TaskFolder]:
...
@overload
def __getitem__(self, __k: Callable[[TaskFolder], bool]):
...
def __getitem__(self, __key: Union[int, slice, str, Callable[[TaskFolder], bool]]):
if isinstance(__key, int):
return super().__getitem__(__key)
elif isinstance(__key, slice):
return self.__class__(super().__getitem__(__key))
elif isinstance(__key, str):
for i in self:
if i.__str__() == __key:
return i
else:
raise KeyError(f"{__key} not in {self}")
elif isinstance(__key, Callable):
return self.__class__(i for i in self if __key(i))
else:
return TypeError(f"unsupported type: {type(__key)}")
def __setitem__(self, *args, **kwargs):
return super().__setitem__(*args, **kwargs)
@property
def done_tasks(self):
return self.__class__(i for i in self if i.is_done)