Skip to content

Commit 415ab79

Browse files
committed
Add some lemmas about j-invariant of the Frey curve.
1 parent 1a6e73a commit 415ab79

File tree

2 files changed

+18
-2
lines changed

2 files changed

+18
-2
lines changed

FLT/Basic/Reductions.lean

+12
Original file line numberDiff line numberDiff line change
@@ -396,6 +396,18 @@ def FreyCurve (P : FreyPackage) : EllipticCurve ℚ := {
396396
WeierstrassCurve.b₆, WeierstrassCurve.b₈]
397397
ring }
398398

399+
lemma FreyCurve.j (P : FreyPackage) :
400+
P.FreyCurve.j = 2^8*(P.c^(2*P.p)-(P.a*P.b)^P.p)/(P.a*P.b*P.c)^(2*P.p) := by
401+
sorry
402+
403+
/-- The q-adic valuation of the j-invariant of the Frey curve is a multiple of p if 2 < q is
404+
a prime of bad reduction. -/
405+
lemma FreyCurve.j_valuation_of_bad_prime (P : FreyPackage) {q : ℕ} (hpPrime : q.Prime)
406+
(hpbad : (q : ℤ) ∣ P.a * P.b * P.c) (hpodd : 2 < q) :
407+
(P.p : ℤ) ∣ padicValRat q P.FreyCurve.j := by
408+
sorry
409+
410+
399411
end FreyPackage
400412

401413

blueprint/src/chapter/ch03frey.tex

+6-2
Original file line numberDiff line numberDiff line change
@@ -215,13 +215,17 @@ \section{Hardly ramified representations}
215215
If however $p$ divides $abc$ then $E$ has multiplicative
216216
reduction at $p$, and we can use the theory of the Tate curve to analyse $\rho$ at $p$.
217217

218-
\begin{theorem}\label{Frey_curve_j}\uses{FLT.FreyCurve} If $(a,b,c,\ell)$ is a Frey package then the $j$-invariant of the corresponding Frey curve is $2^8(C^2-AB)^3/A^2B^2C^2$, where $A=a^\ell$, $B=b^\ell$ and $C=c^\ell$.
218+
\begin{theorem}\label{Frey_curve_j}\lean{FLT.FreyPackage.FreyCurve.j}\uses{FLT.FreyCurve} If $(a,b,c,\ell)$ is a Frey package then the $j$-invariant of the corresponding Frey curve is $2^8(C^2-AB)^3/A^2B^2C^2$, where $A=a^\ell$, $B=b^\ell$ and $C=c^\ell$.
219219
\end{theorem}
220220
\begin{proof}
221221
Apply the explicit formula (presumably already in mathlib)
222222
\end{proof}
223223

224-
\begin{corollary}\label{Frey_curve_val_j} If $(a,b,c,\ell)$ is a Frey package and the $j$-invariant of the corresponding Frey curve is $j$, and if $2<p\mid abc$, then the $p$-adic valuation $v_p(j)$ of $j$ is a multiple of $\ell$.
224+
\begin{corollary}
225+
\label{FLT.FreyPackage.FreyCurve.j_valuation_of_bad_prime}
226+
\lean{FLT.FreyPackage.FreyCurve.j_valuation_of_bad_prime}
227+
\uses{Frey_curve_j}
228+
If $(a,b,c,\ell)$ is a Frey package and the $j$-invariant of the corresponding Frey curve is $j$, and if $2<p\mid abc$, then the $p$-adic valuation $v_p(j)$ of $j$ is a multiple of $\ell$.
225229
\end{corollary}
226230
\begin{proof}\uses{Frey_curve_j} Indeed $p$ does not divide $2^8$ as $p>2$, and (using the notation of the previous theorem) $p$ does not divide $C^2-AB$ either, because it divides precisely one of $A$, $B$ and $C$. Hence $v_p(j)=-2v_p(a^\ell b^\ell c^\ell)=-2\ell v_p(abc)$ is a multiple of $\ell$.
227231
\end{proof}

0 commit comments

Comments
 (0)