@@ -6,7 +6,21 @@ Authors: Yunzhou Xie, Yichen Feng, Yanqiao Zhou, Jujian Zhang
6
6
7
7
import Mathlib.RingTheory.Bialgebra
8
8
9
- set_option autoImplicit false
9
+ /-!
10
+
11
+ # "Sweedler notation"
12
+
13
+ Sweedler notation seems to be the practice of writing `comul x` (for `x` in a
14
+ coalgebra) as `∑ᵢ x₁ᵢ ⊗ x₂ᵢ` and then dropping the sum and instead writing
15
+ `x⁽¹⁾ ⊗ x⁽²⁾`. The axioms of a coalgebra/bialgebra/Hopf algebra can be
16
+ rewritten using Sweedler notation and look a little less cluttered this way.
17
+ Something which surprised me (KB): sometimes `ext` is not enough and one really
18
+ has to decompose elements in this way; so we take the time to write a small API for
19
+ this idea, although we do not attempt to remove the `∑` symbol. The finite
20
+ index set that `i` runs through is, somewhat arbitrarily, defined to be
21
+ a subset of `A ⊗ A` with `A` the coalgebra in question.
22
+
23
+ -/
10
24
11
25
open BigOperators TensorProduct
12
26
@@ -51,12 +65,12 @@ lemma comul_repr (a : A) :
51
65
52
66
lemma sum_counit_tmul (a : A) {ι : Type *} (s : Finset ι) (x y : ι → A)
53
67
(repr : comul a = ∑ i in s, x i ⊗ₜ[R] y i) :
54
- ∑ i in s, counit (R := R) (x i) ⊗ₜ y i = 1 ⊗ₜ[R] a := by
68
+ ∑ i in s, counit (R := R) (x i) ⊗ₜ y i = 1 ⊗ₜ[R] a := by
55
69
simpa [repr, map_sum] using congr($(rTensor_counit_comp_comul (R := R) (A := A)) a)
56
70
57
71
lemma sum_tmul_counit (a : A) {ι : Type *} (s : Finset ι) (x y : ι → A)
58
72
(repr : comul a = ∑ i in s, x i ⊗ₜ[R] y i) :
59
- ∑ i in s, (x i) ⊗ₜ counit (R := R) (y i) = a ⊗ₜ[R] 1 := by
73
+ ∑ i in s, (x i) ⊗ₜ counit (R := R) (y i) = a ⊗ₜ[R] 1 := by
60
74
simpa [repr, map_sum] using congr($(lTensor_counit_comp_comul (R := R) (A := A)) a)
61
75
62
76
end Coalgebra
0 commit comments