@@ -379,16 +379,30 @@ lemma Pi : IsActionTopology R (∀ i, A i) := by
379
379
380
380
end Pi
381
381
382
+ section Sigma
383
+
384
+ variable {R : Type } [τR : TopologicalSpace R]
385
+
386
+ variable {ι : Type } {A : ι → Type } [∀ i, SMul R (A i)] [∀ i, TopologicalSpace (A i)]
387
+ [∀ i, IsActionTopology R (A i)]
388
+
389
+ instance : SMul R (Σ i, A i) where
390
+ smul r s := ⟨s.1 , r • s.2 ⟩
391
+
392
+ -- this looks true to me
393
+ lemma sigma : IsActionTopology R (Σ i, A i) := by
394
+ constructor
395
+ --unfold instTopologicalSpaceProd actionTopology
396
+ apply le_antisymm
397
+ sorry
398
+ sorry
382
399
383
- #check coinduced_iSup
384
- #check induced_iInf
385
- #exit
386
400
/-
387
401
coinduced_iSup.{w, u_1, u_2} {α : Type u_1} {β : Type u_2} {f : α → β} {ι : Sort w} {t : ι → TopologicalSpace α} :
388
402
TopologicalSpace.coinduced f (⨆ i, t i) = ⨆ i, TopologicalSpace.coinduced f (t i)
389
403
-/
390
- lemma induced_. {w, u_1, u_2} {α : Type u_1} {β : Type u_2} {f : α → β} {ι : Sort w} {t : ι → TopologicalSpace α} :
391
- TopologicalSpace.coinduced f (⨆ i, t i) = ⨆ i, TopologicalSpace.coinduced f (t i)
404
+ -- lemma induced_.{w, u_1, u_2} {α : Type u_1} {β : Type u_2} {f : α → β} {ι : Sort w} {t : ι → TopologicalSpace α} :
405
+ -- TopologicalSpace.coinduced f (⨆ i, t i) = ⨆ i, TopologicalSpace.coinduced f (t i)
392
406
393
407
-- -- original proof, now broken
394
408
-- rw [ coinduced_le_iff_le_induced ]
@@ -406,10 +420,7 @@ lemma induced_.{w, u_1, u_2} {α : Type u_1} {β : Type u_2} {f : α → β} {ι
406
420
-- -- over a big set
407
421
-- apply iSup_comp_le (_ : N → TopologicalSpace N)
408
422
409
- end function
410
-
411
423
#exit
412
-
413
424
section
414
425
-- Let R be a monoid, with a compatible topology.
415
426
variable (R : Type *) [Monoid R] [TopologicalSpace R] [ContinuousMul R]
0 commit comments