@@ -43,6 +43,7 @@ \section{Statement of the theorem}
43
43
\label {Bourbaki52222.MulAction.stabilizer_surjective_of_action }
44
44
\lean {Bourbaki52222.MulAction.stabilizer_surjective_of_action}
45
45
\uses {Bourbaki52222.stabilizer.toGaloisGroup}
46
+ \leanok
46
47
The map $ g\mapsto \phi _g$ from $ D_Q$ to $ \Aut _K(L)$ defined above is surjective.
47
48
\end {theorem }
48
49
@@ -310,9 +311,11 @@ \section{The extension \texorpdfstring{$(B/Q)/(A/P)$}{(B/Q)/(A/P)}.}
310
311
\section {The extension \texorpdfstring {$ L/K$ }{L/K}. }
311
312
312
313
\begin {theorem }
313
- \label {foo1 }
314
- If $ \lambda\in L$ then there's a monic polynomial $ P_\lambda\in K[X]$ of degree $ |G|$
315
- with $ \lambda $ as a root, and which splits completely in $ L[X]$ .
314
+ \lean {Bourbaki52222.f_exists}
315
+ \label {Bourbaki52222.f_exists }
316
+ If $ \lambda\in L$ then there's a monic polynomial $ P_\lambda\in K[X]$ of degree $ |G|$
317
+ with $ \lambda $ as a root, and which splits completely in $ L[X]$ .
318
+ \leanok
316
319
\end {theorem }
317
320
\begin {proof }
318
321
A general $ \lambda\in L$ can be written as $ \beta _1 /\beta _2 $ where $ \beta _1 ,\beta _2 \in B/Q$ .
@@ -325,25 +328,49 @@ \section{The extension \texorpdfstring{$L/K$}{L/K}.}
325
328
Dividing through in $ K[X]$ gives us the polynomial we seek.
326
329
\end {proof }
327
330
328
- \begin {corollary } The extension $ L/K$ is algebraic and normal.
331
+ \begin {corollary }
332
+ \lean {Bourbaki52222.algebraic}
333
+ \label {Bourbaki52222.algebraic }
334
+ \leanok
335
+ The extension $ L/K$ is algebraic.
329
336
\end {corollary }
330
- \begin {proof } \uses {foo1}
331
- Exercise using the previous theorem.
337
+ \begin {proof }
338
+ \uses {Bourbaki52222.f_exists}
339
+ Exercise using~\ref {Bourbaki52222.f_exists }.
340
+ \end {proof }
341
+
342
+ \begin {corollary }
343
+ \lean {Bourbaki52222.normal}
344
+ \label {Bourbaki52222.normal }
345
+ \leanok
346
+ The extension $ L/K$ is normal.
347
+ \end {corollary }
348
+ \begin {proof }
349
+ \uses {Bourbaki52222.f_exists}
350
+ Exercise using~\ref {Bourbaki52222.f_exists }.
332
351
\end {proof }
333
352
334
353
Note that $ L/K$ might not be separable and might have infinite degree. However
335
354
336
- \begin {corollary } Any subextension of $ L/K$ which is finite and separable over $ K$
355
+ \begin {corollary }
356
+ \label {Bourbaki52222.finite_separable_subextension_finrank_le }
357
+ Any subextension of $ L/K$ which is finite and separable over $ K$
337
358
has degree at most $ |G|$ .
338
359
\end {corollary }
339
360
\begin {proof }
340
361
Finite and separable implies simple, and we've already seen that any
341
362
element of $ L$ has degree at most $ |G|$ over $ K$ .
342
363
\end {proof }
343
364
344
- \begin {corollary } The maximal separable subextension $ M$ of $ L/K$ has degree at most $ |G|$ .
365
+ \begin {corollary }
366
+ \lean {Bourbaki52222.separableClosure_finrank_le}
367
+ \label {Bourbaki52222.separableClosure_finrank_le }
368
+ The maximal separable subextension $ M$ of $ L/K$ has degree at most $ |G|$ .
369
+ \leanok
345
370
\end {corollary }
346
- \begin {proof } If it has dimension greater than $ |G|$ over $ K$ , then it has a finitely-generated
371
+ \begin {proof }
372
+ \uses {Bourbaki52222.finite_separable_subextension_finrank_le}
373
+ If it has dimension greater than $ |G|$ over $ K$ , then it has a finitely-generated
347
374
subfeld of $ K$ -dimension greater than $ |G|$ , and is finite and separable, contradicting
348
375
the previous result.
349
376
\end {proof }
0 commit comments