Skip to content

Commit 64f866e

Browse files
Improve the blueprint graph a bit (#158)
1 parent 36d0001 commit 64f866e

File tree

2 files changed

+41
-10
lines changed

2 files changed

+41
-10
lines changed

blueprint/lean_decls

+5-1
Original file line numberDiff line numberDiff line change
@@ -73,4 +73,8 @@ MulSemiringAction.CharacteristicPolynomial.Mbar_deg
7373
MulSemiringAction.CharacteristicPolynomial.Mbar_monic
7474
MulSemiringAction.CharacteristicPolynomial.Mbar_eval_eq_zero
7575
MulSemiringAction.reduction_isIntegral
76-
Algebra.exists_dvd_nonzero_if_isIntegral
76+
Algebra.exists_dvd_nonzero_if_isIntegral
77+
Bourbaki52222.f_exists
78+
Bourbaki52222.algebraic
79+
Bourbaki52222.normal
80+
Bourbaki52222.separableClosure_finrank_le

blueprint/src/chapter/FrobeniusProject.tex

+36-9
Original file line numberDiff line numberDiff line change
@@ -43,6 +43,7 @@ \section{Statement of the theorem}
4343
\label{Bourbaki52222.MulAction.stabilizer_surjective_of_action}
4444
\lean{Bourbaki52222.MulAction.stabilizer_surjective_of_action}
4545
\uses{Bourbaki52222.stabilizer.toGaloisGroup}
46+
\leanok
4647
The map $g\mapsto \phi_g$ from $D_Q$ to $\Aut_K(L)$ defined above is surjective.
4748
\end{theorem}
4849

@@ -310,9 +311,11 @@ \section{The extension \texorpdfstring{$(B/Q)/(A/P)$}{(B/Q)/(A/P)}.}
310311
\section{The extension \texorpdfstring{$L/K$}{L/K}.}
311312

312313
\begin{theorem}
313-
\label{foo1}
314-
If $\lambda\in L$ then there's a monic polynomial $P_\lambda\in K[X]$ of degree $|G|$
315-
with $\lambda$ as a root, and which splits completely in $L[X]$.
314+
\lean{Bourbaki52222.f_exists}
315+
\label{Bourbaki52222.f_exists}
316+
If $\lambda\in L$ then there's a monic polynomial $P_\lambda\in K[X]$ of degree $|G|$
317+
with $\lambda$ as a root, and which splits completely in $L[X]$.
318+
\leanok
316319
\end{theorem}
317320
\begin{proof}
318321
A general $\lambda\in L$ can be written as $\beta_1/\beta_2$ where $\beta_1,\beta_2\in B/Q$.
@@ -325,25 +328,49 @@ \section{The extension \texorpdfstring{$L/K$}{L/K}.}
325328
Dividing through in $K[X]$ gives us the polynomial we seek.
326329
\end{proof}
327330

328-
\begin{corollary} The extension $L/K$ is algebraic and normal.
331+
\begin{corollary}
332+
\lean{Bourbaki52222.algebraic}
333+
\label{Bourbaki52222.algebraic}
334+
\leanok
335+
The extension $L/K$ is algebraic.
329336
\end{corollary}
330-
\begin{proof} \uses{foo1}
331-
Exercise using the previous theorem.
337+
\begin{proof}
338+
\uses{Bourbaki52222.f_exists}
339+
Exercise using~\ref{Bourbaki52222.f_exists}.
340+
\end{proof}
341+
342+
\begin{corollary}
343+
\lean{Bourbaki52222.normal}
344+
\label{Bourbaki52222.normal}
345+
\leanok
346+
The extension $L/K$ is normal.
347+
\end{corollary}
348+
\begin{proof}
349+
\uses{Bourbaki52222.f_exists}
350+
Exercise using~\ref{Bourbaki52222.f_exists}.
332351
\end{proof}
333352

334353
Note that $L/K$ might not be separable and might have infinite degree. However
335354

336-
\begin{corollary} Any subextension of $L/K$ which is finite and separable over $K$
355+
\begin{corollary}
356+
\label{Bourbaki52222.finite_separable_subextension_finrank_le}
357+
Any subextension of $L/K$ which is finite and separable over $K$
337358
has degree at most $|G|$.
338359
\end{corollary}
339360
\begin{proof}
340361
Finite and separable implies simple, and we've already seen that any
341362
element of $L$ has degree at most $|G|$ over $K$.
342363
\end{proof}
343364

344-
\begin{corollary} The maximal separable subextension $M$ of $L/K$ has degree at most $|G|$.
365+
\begin{corollary}
366+
\lean{Bourbaki52222.separableClosure_finrank_le}
367+
\label{Bourbaki52222.separableClosure_finrank_le}
368+
The maximal separable subextension $M$ of $L/K$ has degree at most $|G|$.
369+
\leanok
345370
\end{corollary}
346-
\begin{proof} If it has dimension greater than $|G|$ over $K$, then it has a finitely-generated
371+
\begin{proof}
372+
\uses{Bourbaki52222.finite_separable_subextension_finrank_le}
373+
If it has dimension greater than $|G|$ over $K$, then it has a finitely-generated
347374
subfeld of $K$-dimension greater than $|G|$, and is finite and separable, contradicting
348375
the previous result.
349376
\end{proof}

0 commit comments

Comments
 (0)