Skip to content

Commit 7aafaa7

Browse files
committed
Merge branch 'build' of github.com:Ruben-VandeVelde/FLT-Wiles into Ruben-VandeVelde-build
2 parents a1f0c37 + 5b5fb54 commit 7aafaa7

File tree

8 files changed

+74
-45
lines changed

8 files changed

+74
-45
lines changed

FLT/FLT_files.lean

+21-2
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,28 @@
1+
import FLT.AutomorphicForm.QuaternionAlgebra
2+
import FLT.AutomorphicRepresentation.Example
13
import FLT.Basic.Reductions
24
import FLT.EllipticCurve.Torsion
5+
import FLT.ForMathlib.ActionTopology
6+
import FLT.ForMathlib.FGModuleTopology
7+
import FLT.ForMathlib.MiscLemmas
8+
import FLT.GaloisRepresentation.Cyclotomic
39
import FLT.GaloisRepresentation.HardlyRamified
410
import FLT.GlobalLanglandsConjectures.GLnDefs
11+
import FLT.GlobalLanglandsConjectures.GLzero
512
import FLT.GroupScheme.FiniteFlat
13+
import FLT.HIMExperiments.ContinuousSMul_topology
14+
import FLT.HIMExperiments.dual_topology
15+
import FLT.HIMExperiments.flatness
16+
import FLT.HIMExperiments.module_topology
17+
import FLT.HIMExperiments.right_module_topology
618
import FLT.Hard.Results
19+
import FLT.MathlibExperiments.Coalgebra.Monoid
20+
import FLT.MathlibExperiments.Coalgebra.Sweedler
21+
import FLT.MathlibExperiments.Coalgebra.TensorProduct
22+
import FLT.MathlibExperiments.Frobenius
23+
import FLT.MathlibExperiments.Frobenius2
24+
import FLT.MathlibExperiments.FrobeniusRiou
25+
import FLT.MathlibExperiments.HopfAlgebra.Basic
26+
import FLT.MathlibExperiments.IsCentralSimple
27+
import FLT.MathlibExperiments.IsFrobenius
728
import FLT.TateCurve.TateCurve
8-
import FLT.AutomorphicRepresentation.Example
9-
import FLT.mathlibExperiments.IsCentralSimple

FLT/HIMExperiments/ContinuousSMul_topology.lean

+38-36
Original file line numberDiff line numberDiff line change
@@ -80,6 +80,8 @@ functions from `A` (now considered only as an index set, so with no topology) to
8080
8181
-/
8282

83+
namespace ContinuousSMul_topology
84+
8385
section continuous_smul
8486

8587
variable {R : Type} [τR : TopologicalSpace R]
@@ -188,7 +190,7 @@ variable {R : Type} [τR : TopologicalSpace R]
188190
variable {M : Type} [Zero M] [SMul R M] [aM : TopologicalSpace M] [IsActionTopology R M]
189191
variable {N : Type} [Zero N] [SMul R N] [aN : TopologicalSpace N] [IsActionTopology R N]
190192

191-
open TopologicalSpace in
193+
open _root_.TopologicalSpace in
192194
lemma prod [MulOneClass.{0} R] : IsActionTopology.{0} R (M × N) := by
193195
constructor
194196
-- goal: to prove product topology is action topology.
@@ -216,46 +218,44 @@ lemma prod [MulOneClass.{0} R] : IsActionTopology.{0} R (M × N) := by
216218
sorry
217219
sorry
218220

219-
#exit
220-
221221

222222
-- idea: map R x M -> M is R x M -> R x M x N, τR x σ
223223
-- R x M has topology τR x (m ↦ Prod.mk m (0 : N))^*σ
224224
-- M x N -> M is pr₁⋆σ
225225
-- is pr1_*sigma=Prod.mk' 0^*sigma
226226
--rw [← continuous_id_iff_le]
227-
have := isActionTopology R M
228-
let τ1 : TopologicalSpace M := (actionTopology R (M × N)).coinduced (Prod.fst)
229-
have foo : aM ≤ τ1 := by
230-
rw [this]
231-
apply sInf_le
232-
unfold_let
233-
constructor
234-
rw [continuous_iff_coinduced_le]
235-
--rw [continuous_iff_le_induced]
236-
--rw [instTopologicalSpaceProd]
237-
have := ActionTopology.continuousSMul R (M × N)
238-
obtain ⟨h⟩ := this
239-
rw [continuous_iff_coinduced_le] at h
240-
have h2 := coinduced_mono (f := (Prod.fst : M × N → M)) h
241-
refine le_trans ?_ h2
242-
rw [@coinduced_compose]
243-
--rw [coinduced_le_iff_le_induced]
244-
rw [show ((Prod.fst : M × N → M) ∘ (fun p ↦ p.1 • p.2 : R × M × N → M × N)) =
245-
(fun rm ↦ rm.1 • rm.2) ∘ (fun rmn ↦ (rmn.1, rmn.2.1)) by
246-
ext ⟨r, m, n⟩
247-
rfl]
248-
rw [← @coinduced_compose]
249-
apply coinduced_mono
250-
rw [← continuous_id_iff_le]
251-
have this2 := @Continuous.prod_map R M R M τR ((TopologicalSpace.coinduced Prod.fst (actionTopology R (M × N)))) τR aM id id ?_ ?_
252-
swap; fun_prop
253-
swap; sorry -- action top ≤ coinduced Prod.fst (action)
254-
convert this2
255-
sorry -- action top on M now equals coinduced Prod.fst
256-
sorry -- same
257-
-- so we're going around in circles
258-
sorry
227+
-- have := isActionTopology R M
228+
-- let τ1 : TopologicalSpace M := (actionTopology R (M × N)).coinduced (Prod.fst)
229+
-- have foo : aM ≤ τ1 := by
230+
-- rw [this]
231+
-- apply sInf_le
232+
-- unfold_let
233+
-- constructor
234+
-- rw [continuous_iff_coinduced_le]
235+
-- --rw [continuous_iff_le_induced]
236+
-- --rw [instTopologicalSpaceProd]
237+
-- have := ActionTopology.continuousSMul R (M × N)
238+
-- obtain ⟨h⟩ := this
239+
-- rw [continuous_iff_coinduced_le] at h
240+
-- have h2 := coinduced_mono (f := (Prod.fst : M × N → M)) h
241+
-- refine le_trans ?_ h2
242+
-- rw [@coinduced_compose]
243+
-- --rw [coinduced_le_iff_le_induced]
244+
-- rw [show ((Prod.fst : M × N → M) ∘ (fun p ↦ p.1 • p.2 : R × M × N → M × N)) =
245+
-- (fun rm ↦ rm.1 • rm.2) ∘ (fun rmn ↦ (rmn.1, rmn.2.1)) by
246+
-- ext ⟨r, m, n⟩
247+
-- rfl]
248+
-- rw [← @coinduced_compose]
249+
-- apply coinduced_mono
250+
-- rw [← continuous_id_iff_le]
251+
-- have this2 := @Continuous.prod_map R M R M τR ((TopologicalSpace.coinduced Prod.fst (actionTopology R (M × N)))) τR aM id id ?_ ?_
252+
-- swap; fun_prop
253+
-- swap; sorry -- action top ≤ coinduced Prod.fst (action)
254+
-- convert this2
255+
-- sorry -- action top on M now equals coinduced Prod.fst
256+
-- sorry -- same
257+
-- -- so we're going around in circles
258+
-- sorry
259259
-- let τ2 : TopologicalSpace M := (actionTopology R (M × N)).induced (fun m ↦ (m, 0))
260260
-- have moo : τ1 = τ2 := by
261261
-- unfold_let
@@ -270,7 +270,7 @@ lemma prod [MulOneClass.{0} R] : IsActionTopology.{0} R (M × N) := by
270270
-- ·
271271
-- sorry
272272
-- sorry
273-
· apply actionTopology_le
273+
-- · apply actionTopology_le
274274
-- --have foo : @Continuous (M × N) (M × N) _ _ _ := @Continuous.prod_map M N M N (σMN.coinduced Prod.fst) (σMN.coinduced Prod.snd) aM aN id id ?_ ?_-- Z * W -> X * Y
275275
-- -- conjecture: pushforward of σMN is continuous
276276
-- -- ⊢ instTopologicalSpaceProd ≤ σMN
@@ -499,3 +499,5 @@ instance Module.topologicalRing : @TopologicalRing D (Module.rtopology A D) _ :=
499499
sorry }
500500

501501
end commutative
502+
503+
end ContinuousSMul_topology

FLT/HIMExperiments/FGModuleTopology.lean

+1-2
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
11
import Mathlib.Algebra.Module.Projective
2+
import Mathlib.Data.Finite.Card
23
import Mathlib.LinearAlgebra.TensorProduct.RightExactness
34
import Mathlib.Topology.Algebra.Module.Basic
45
import FLT.ForMathlib.MiscLemmas
@@ -31,8 +32,6 @@ or $p$-adics).
3132
3233
-/
3334

34-
set_option lang.lemmaCmd true
35-
3635
section basics
3736

3837
variable (R : Type*) [TopologicalSpace R] [Semiring R]

FLT/HIMExperiments/dual_topology.lean

+4
Original file line numberDiff line numberDiff line change
@@ -90,6 +90,8 @@ functions from `A` (now considered only as an index set, so with no topology) to
9090
9191
-/
9292

93+
namespace dual_topology
94+
9395
section basics
9496

9597
variable (R : Type*) [Monoid R] [TopologicalSpace R] [ContinuousMul R]
@@ -340,3 +342,5 @@ instance moobar : @TopologicalRing D (Module.topology A) _ :=
340342
apply Module.continuous_bilinear A (LinearMap.mul A D)
341343
-- finally negation is continuous because it's linear.
342344
continuous_neg := Module.continuous_linear A (-LinearMap.id) }
345+
346+
end dual_topology

FLT/HIMExperiments/right_module_topology.lean

+5
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,9 @@ functions from `M` (now considered only as an index set, so with no topology) to
3535
3636
-/
3737

38+
-- See FLT.ForMathlib.ActionTopology for a parallel development.
39+
namespace right_module_topology
40+
3841
section defs
3942

4043
class IsActionTopology (R M : Type*) [SMul R M]
@@ -190,3 +193,5 @@ end what_i_want
190193
-- possible hints at https://github.com/ImperialCollegeLondon/FLT/blob/main/FLT/HIMExperiments/module_topology.lean
191194
-- except there the topology is *different* so the work does not apply
192195
end ActionTopology
196+
197+
end right_module_topology

FLT/MathlibExperiments/Coalgebra/Monoid.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ Authors: Yunzhou Xie, Yichen Feng, Yanqiao Zhou, Jujian Zhang
55
-/
66

77
import Mathlib.RingTheory.TensorProduct.Basic
8-
import FLT.mathlibExperiments.Coalgebra.Sweedler
8+
import FLT.MathlibExperiments.Coalgebra.Sweedler
99
import Mathlib.RingTheory.HopfAlgebra
1010

1111
/-!

FLT/MathlibExperiments/Coalgebra/TensorProduct.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ Authors: Yunzhou Xie, Yichen Feng, Yanqiao Zhou, Jujian Zhang
66

77
import Mathlib.RingTheory.TensorProduct.Basic
88
import Mathlib.RingTheory.Bialgebra.Basic
9-
import FLT.mathlibExperiments.Coalgebra.Sweedler
9+
import FLT.MathlibExperiments.Coalgebra.Sweedler
1010

1111
/-!
1212

FLT/MathlibExperiments/HopfAlgebra/Basic.lean

+3-3
Original file line numberDiff line numberDiff line change
@@ -5,8 +5,8 @@ Authors: Yunzhou Xie, Yichen Feng, Yanqiao Zhou, Jujian Zhang
55
-/
66

77
import Mathlib.RingTheory.HopfAlgebra
8-
import FLT.mathlibExperiments.Coalgebra.Monoid
9-
import FLT.mathlibExperiments.Coalgebra.TensorProduct
8+
import FLT.MathlibExperiments.Coalgebra.Monoid
9+
import FLT.MathlibExperiments.Coalgebra.TensorProduct
1010
import Mathlib.Tactic.Group
1111

1212
/-!
@@ -16,7 +16,7 @@ For an `R`-hopf algebra `A`, we prove in this file the following basic propertie
1616
- the antipodal map is anticommutative;
1717
- the antipodal map is unique linear map whose convolution inverse is the identity `𝟙 A`.
1818
(Note that, confusingly, the identity linear map `x ↦ x` is not actually the unit in the monoid
19-
structure of linear maps. See `mathlibExperiments/Coalgebra/Monoid.lean`)
19+
structure of linear maps. See `MathlibExperiments/Coalgebra/Monoid.lean`)
2020
if we further assume `A` is commutative then
2121
- the `R`-algebra homomorphisms from `A` to `L` has a group structure where multiplication is
2222
convolution, and inverse of `f `is `f ∘ antipode`

0 commit comments

Comments
 (0)