We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
simp only
1 parent 453b471 commit a39f7bdCopy full SHA for a39f7bd
FLT/for_mathlib/Frobenius.lean
@@ -499,7 +499,7 @@ lemma F_invariant_under_finite_aut (σ : L ≃ₐ[K] L) :
499
set i : (τ : L ≃ₐ[K] L) → τ ∈ Finset.univ → L ≃ₐ[K] L := fun τ _ => σ * τ
500
-- needed to use `set i` instead of `have i`, in order to be able to use `i` later on, in proof
501
have hi : ∀ (τ : L ≃ₐ[K] L) (hτ : τ ∈ Finset.univ), i τ hτ ∈ Finset.univ := by
502
- simp [Finset.mem_univ, forall_true_left, forall_const]
+ simp only [Finset.mem_univ, forall_true_left, forall_const]
503
have i_inj : ∀ (τ₁ : L ≃ₐ[K] L) (hτ₁ : τ₁ ∈ Finset.univ) (τ₂ : L ≃ₐ[K] L)
504
(hτ₂ : τ₂ ∈ Finset.univ), i τ₁ hτ₁ = i τ₂ hτ₂ → τ₁ = τ₂ := by
505
intros τ₁ _ τ₂ _ h
0 commit comments