@@ -19,56 +19,8 @@ \section{The finite adeles of the rationals.}
19
19
20
20
Mathlib already has the definition of the finite adeles $ \A _{\Q }^f$ of the rationals as a
21
21
commutative $ \Q $ -algebra. It does not yet have the topology; work on this is on PR 13703 to mathlib.
22
- See also the prerequisite PR 13705, which is ready for review. Note that 13703 still contains a
23
- {\tt sorry}, but the result is true and not too hard. I tried proving it directly though and it ended
24
- up a bit long. I propose the following plan. Start by proving the following induction principle for
25
- finite adeles:
26
- \begin {lemma }
27
- \label {DedekindDomain.FiniteAdeleRing.mul_induction_on }
28
- \lean {DedekindDomain.FiniteAdeleRing.mul_induction_on}
29
- \leanok
30
- If we have a predicate $ P$ on the finite adeles, with the following properties:
31
- \begin {enumerate }
32
- \item $ P(a)$ is true for $ a$ any finite integral adele;
33
- \item $ P(a)$ and $ P(b)$ implies $ P(ab)$ ;
34
- \item For every valuation $ v$ , $ P(a)$ is true for every finite adele which is integral
35
- away from $ v$ and is a unit times the inverse of a uniformiser at $ v$ .
36
- \end {enumerate }
37
- Then $ P$ is true for all finite adeles.
38
- \end {lemma }
39
- \begin {proof }
40
- Every finite adele is integral away from a finite bad set $ v\in S$ . For these $ v$ ,
41
- embed the local field $ K_v$ into the finite adeles by sending $ x_v\in K_v$ to the
42
- finite adele which is $ x_v$ at $ v$ and 1 elsewhere.
43
-
44
- If $ \varpi _v$ is the finite adele corresponding a uniformiser at $ v$ ,
45
- $ a_v=u_v(\pi _v^{-1})^{n_v}$ for some unit $ u_v$ and positive $ n_v$ (the additive valuation
46
- of the integer $ a_v^{-1}$ ). Note that $ P(u_v)$ by hypothesis~1, and
47
- $ P(\pi _v^{-1})$ by hypothesis~3.
48
-
49
- Now if $ b=(b_v)_v$ is the finite adele with $ b_v=a_v$ for $ v\not \in S$ and $ b_v=1 $ for $ v\in S$ ,
50
- then $ b$ is a finite integral adele (so hypothesis 1 applies), and $ a=b\prod _{v\in S}a_v$ is hence
51
- a finite product of finite adeles which satisfy $ P$ and thus satisfies $ P$ by hypothesis 2
52
- (with hypothesis 1 to deal with the base case $ a=1 $ ).
53
- \end {proof }
54
-
55
- Then prove the theorem.
56
-
57
- \begin {theorem }
58
- \label {DedekindDomain.FiniteAdeleRing.clear_denominator }
59
- \lean {DedekindDomain.FiniteAdeleRing.clear_denominator}
60
- \leanok
61
- Let $ R$ be a Dedekind domain with field of fractions $ K$ . Then every $ x\in \A _K^f$ can
62
- be written as $ x=st$ with $ s\in \R \backslash \{ 0 \} $ and $ t\in \prod _v R_v$ a finite integral adele.
63
- \end {theorem }
64
- \begin {proof }
65
- \uses {DedekindDomain.FiniteAdeleRing.mul_induction_on}
66
- Use the induction procedure. The first and second hypotheses are easily checked
67
- (we can let $ s=1 $ for the first, and take the product of the $ s$ s for the second).
68
- For the third, if $ a_v$ is integral then we use the first hypothesis,and if the
69
- additive valuation of $ a_v$ is $ -n<0 $ , we let $ s$ be the $ n$ th power of a nonzero
70
- element in the prime ideal of $ R$ corresponding to $ v$ .
71
- \end {proof }
22
+ See also the prerequisite PR 13705, which is ready for review. Once these PRs are merged, we will
23
+ have
72
24
73
25
\begin {corollary }
74
26
\label {DedekindDomain.instTopologicalRingFiniteAdeleRing }
@@ -77,7 +29,6 @@ \section{The finite adeles of the rationals.}
77
29
The finite adeles are a topological ring.
78
30
\end {corollary }
79
31
\begin {proof } All this is done in the slightly technical mathlib PR 13703.
80
- \uses {DedekindDomain.FiniteAdeleRing.clear_denominator}
81
32
\leanok
82
33
\end {proof }
83
34
0 commit comments