Skip to content

Commit e022c63

Browse files
committed
add more \notready for orange ovals
1 parent 444cef8 commit e022c63

File tree

2 files changed

+17
-17
lines changed

2 files changed

+17
-17
lines changed

blueprint/src/chapter/ch03frey.tex

+14-14
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@ \section{Good reduction}
8989

9090
Some facts we will need are:
9191

92-
\begin{theorem}\label{good_reduction_implies_unramified} If $E$ is an elliptic curve over a number
92+
\begin{theorem}\label{good_reduction_implies_unramified}\notready If $E$ is an elliptic curve over a number
9393
field $N$ and $E$ has good reduction at a maximal ideal $P$ of $\calO_N$, and if furthermore
9494
$n\not\in P$, then the Galois representation on the $n$-torsion of $E$ is unramified.
9595
\end{theorem}
@@ -98,7 +98,7 @@ \section{Good reduction}
9898
is an etale finite flat group scheme. There might be simpler approaches however. It's worth looking to see what Silverman does.
9999
\end{proof}
100100

101-
\begin{theorem}\label{good_reduction_implies_flat}\uses{finite_flat_group_scheme} If $E$ is an elliptic curve over a number field
101+
\begin{theorem}\label{good_reduction_implies_flat}\uses{finite_flat_group_scheme}\notready If $E$ is an elliptic curve over a number field
102102
$N$ and $E$ has good reduction at a maximal ideal $P$ of $\calO_N$ containing the prime number $p$,
103103
then the Galois representation on the $p$-torsion of $E$ comes from a finite flat group scheme
104104
over the localisation $\calO_{N,P}$.
@@ -151,7 +151,7 @@ \section{Multiplicative reduction}
151151
The main thing we need about elliptic curves with multiplicative reduction over nonarchimedean
152152
local fields is the \emph{uniformisation theorem}, originally due to Tate.
153153

154-
\begin{theorem}\label{Tate_curve_uniformisation}\uses{EllipticCurve.MultiplicativeReduction} If $E$ is an elliptic curve over a field
154+
\begin{theorem}\label{Tate_curve_uniformisation}\uses{EllipticCurve.MultiplicativeReduction}\notready If $E$ is an elliptic curve over a field
155155
complete with respect to a nontrivial nonarchimedean (real-valued) norm $K$ and if $E$ has split
156156
multiplicative reduction, then there is a Galois-equivariant injection
157157
$(K^{\sep})^\times/q^{\mathbb{Z}}\to E(K^{\sep})$, where $q\in K^\times$ satisfies
@@ -181,7 +181,7 @@ \section{Hardly ramified representations}
181181

182182
We make the following definition; this is not in the literature but it is a useful concept for us.
183183

184-
\begin{definition}\label{hardly_ramified} Let $\ell\geq5$ be a prime and let $V$ be a
184+
\begin{definition}\label{hardly_ramified}\notready Let $\ell\geq5$ be a prime and let $V$ be a
185185
2-dimensional vector space over $\Z/\ell\Z$. A representation
186186
$\rho: \GQ\to \GL(V)$ is said to be \emph{hardly ramified} if it satisfies the following four axioms:
187187
\begin{enumerate}
@@ -205,7 +205,7 @@ \section{Hardly ramified representations}
205205
Let $(a,b,c,\ell)$ be a Frey package, with associated Frey curve $E$ and mod $\ell$ Galois
206206
representation $\rho=E[\ell]$. We now work through a proof that $\rho$ is hardly ramified.
207207

208-
\begin{theorem}\label{Frey_curve_good} If $p\not=\ell$ is a prime not dividing $abc$ then
208+
\begin{theorem}\label{Frey_curve_good}\notready If $p\not=\ell$ is a prime not dividing $abc$ then
209209
$\rho$ is unramified at~$p$.
210210
\end{theorem}
211211
\begin{proof}\uses{Frey_curve_good_reduction,good_reduction_implies_unramified} Indeed, $E$ has good reduction at $p$, and hence $\rho$ is unramified at $p$
@@ -226,7 +226,7 @@ \section{Hardly ramified representations}
226226
\begin{proof}\uses{Frey_curve_j} Indeed $p$ does not divide $2^8$ as $p>2$, and (using the notation of the previous theorem) $p$ does not divide $C^2-AB$ either, because it divides precisely one of $A$, $B$ and $C$. Hence $v_p(j)=-2v_p(a^\ell b^\ell c^\ell)=-2\ell v_p(abc)$ is a multiple of $\ell$.
227227
\end{proof}
228228

229-
\begin{corollary}\label{Frey_curve_unram} If $(a,b,c,\ell)$ is a Frey package, if $2<p\mid abc$
229+
\begin{corollary}\label{Frey_curve_unram}\notready If $(a,b,c,\ell)$ is a Frey package, if $2<p\mid abc$
230230
is a prime with $p\not=\ell$, then the $\ell$-torsion in the Frey curve is unramified
231231
at $p$.
232232
\end{corollary}
@@ -242,7 +242,7 @@ \section{Hardly ramified representations}
242242
extension of $\Q_p$).
243243
\end{proof}
244244

245-
\begin{corollary}\label{frey_curve_unramified} If $(a,b,c,\ell)$ is a Frey package, then the $\ell$-torsion in the Frey curve is unramified at all primes $p\not=2,\ell$.
245+
\begin{corollary}\label{frey_curve_unramified}\notready If $(a,b,c,\ell)$ is a Frey package, then the $\ell$-torsion in the Frey curve is unramified at all primes $p\not=2,\ell$.
246246
\end{corollary}
247247
\begin{proof}\uses{Frey_curve_good, Frey_curve_unram} Follows from~\ref{Frey_curve_good} and~\ref{Frey_curve_unram}.
248248
\end{proof}
@@ -251,7 +251,7 @@ \section{Hardly ramified representations}
251251
the Frey curve may not have 2-adic valuation a multiple of $\ell$. We obtain the
252252
following weaker result.
253253

254-
\begin{corollary}\label{frey_curve_at_2} If $(a,b,c,\ell)$ is a Frey package, then the
254+
\begin{corollary}\label{frey_curve_at_2}\notready If $(a,b,c,\ell)$ is a Frey package, then the
255255
semisimplification of the restriction of the $\ell$-torsion $\rho$ in the associated Frey curve
256256
to $\Gal(\Qbar_2/\Q_2)$ is unramified.
257257
\end{corollary}
@@ -261,7 +261,7 @@ \section{Hardly ramified representations}
261261
unramified characters and is hence unramified.
262262
\end{proof}
263263

264-
\begin{theorem}\label{Frey_curve_mod_ell_rep_at_ell}\uses{finite_flat_group_scheme} Let $\rho$ be the $\ell$-torsion in the
264+
\begin{theorem}\label{Frey_curve_mod_ell_rep_at_ell}\uses{finite_flat_group_scheme}\notready Let $\rho$ be the $\ell$-torsion in the
265265
Frey curve associated to a Frey package $(a,b,c,\ell)$. Then the restriction of $\rho$ to $\GQl$ comes from a finite flat group scheme.
266266
\end{theorem}
267267
\begin{proof}\uses{good_reduction_implies_flat, multiplicative_reduction_torsion} The Frey curve either has good reduction at $\ell$ (case 1 of FLT) or multiplicative
@@ -277,7 +277,7 @@ \section{Hardly ramified representations}
277277

278278
We have now proved the first main result of this chapter.
279279

280-
\begin{theorem}\label{frey_curve_hardly_ramified}\uses{EllipticCurve.torsionGaloisRepresentation} Let $\rho$ be the Galois representation on the
280+
\begin{theorem}\label{frey_curve_hardly_ramified}\uses{EllipticCurve.torsionGaloisRepresentation, hardly_ramified}\notready Let $\rho$ be the Galois representation on the
281281
$\ell$-torsion of the Frey curve coming from a Frey package $(a,b,c,\ell)$. Then $\rho$ is hardly
282282
ramified.
283283
\end{theorem}
@@ -310,7 +310,7 @@ \section{Hardly ramified representations}
310310

311311
The next two results are Lemme 6 on p307 of~\cite{serrepropgal}.
312312

313-
\begin{theorem}\label{Frey_characters_are_unramified} With notation as above, the characters
313+
\begin{theorem}\label{Frey_characters_are_unramified}\notready With notation as above, the characters
314314
$\alpha$ and $\beta$ are unramified at $p$ for all primes $p\not=\ell$.
315315
\end{theorem}
316316
\begin{proof}\uses{frey_curve_unramified, frey_curve_at_2} We have seen in theorem~\ref{frey_curve_unramified} that $\rho$ is unramified at all
@@ -323,7 +323,7 @@ \section{Hardly ramified representations}
323323
\begin{remark} Does this innocuous-looking proof above use some form of the Brauer-Nesbitt theorem?
324324
\end{remark}
325325

326-
\begin{theorem}\label{Frey_characters_at_ell} One of $\alpha$ and $\beta$ is unramified at $\ell$.
326+
\begin{theorem}\label{Frey_characters_at_ell}\notready One of $\alpha$ and $\beta$ is unramified at $\ell$.
327327
\end{theorem}
328328
\begin{proof}\uses{multiplicative_reduction_torsion, Frey_curve_mod_ell_rep_at_ell}
329329
In the multiplicative case this follows immediately from the theory of the Tate curve.
@@ -343,7 +343,7 @@ \section{Hardly ramified representations}
343343
\end{proof}
344344

345345
To summarise, we have shown the following.
346-
\begin{theorem}\label{Frey_curve_reducible_structure} If $\rho$ is reducible, then either $\rho$
346+
\begin{theorem}\label{Frey_curve_reducible_structure}\notready If $\rho$ is reducible, then either $\rho$
347347
has a trivial 1-dimensional submodule or a trivial 1-dimensional quotient (here ``trivial'' means
348348
that the Galois group $\GQ$ acts trivially).
349349
\end{theorem}
@@ -410,6 +410,6 @@ \section{Hardly ramified representations}
410410

411411
\begin{theorem}\label{Frey_curve_irreducible} The $\ell$-torsion in the Frey curve associated to a Frey package $(a,b,c,\ell)$ is irreducible.
412412
\end{theorem}
413-
\begin{proof}\uses{Frey_curve_reducible_structure, Frey_curve_no_trivial_submodule, Frey_curve_no_trivial_quotient} Follows from theorem~\ref{Frey_curve_reducible_structure}, corollary~\ref{Frey_curve_no_trivial_submodule}
413+
\begin{proof}\uses{Frey_curve_reducible_structure, Frey_curve_no_trivial_submodule, Frey_curve_no_trivial_quotient,EllipticCurve.n_torsion_dimension} Follows from theorem~\ref{Frey_curve_reducible_structure}, corollary~\ref{Frey_curve_no_trivial_submodule}
414414
and corollary~\ref{Frey_curve_no_trivial_quotient}.
415415
\end{proof}

blueprint/src/chapter/chtopbestiary.tex

+3-3
Original file line numberDiff line numberDiff line change
@@ -146,14 +146,14 @@ \section{Automorphic forms and representations}
146146
and $n\geq1$ such that $|f(x)\leq C||x||_\rho^n$.
147147
\end{definition}
148148

149-
\begin{theorem} This is independent of the choice of $\rho$ as above
149+
\begin{theorem}\label{slowly_increasing_well_defined}\uses{slowly_increasing}\notready This is independent of the choice of $\rho$ as above
150150
\end{theorem}
151151
\begin{proof} Follows from the above.
152152
\end{proof}
153153

154154
We can now give the definition of an automorphic form. For FLT we only need the definition for $G$ being either an abelian algebraic group, or an inner form of $GL(2)$, but we have chosen to work in full generality here.
155155

156-
\begin{definition}\label{automorphic_form}\uses{slowly_increasing,connected_reductive_group, lie_group_from_algebraic_group, topology_on_affine_variety_computation}\notready An \emph{automorphic form} is a function $\phi:G(\A_N)\to\C$ satisfying the following conditions:
156+
\begin{definition}\label{automorphic_form}\uses{slowly_increasing_well_defined,connected_reductive_group, lie_group_from_algebraic_group, topology_on_affine_variety_computation}\notready An \emph{automorphic form} is a function $\phi:G(\A_N)\to\C$ satisfying the following conditions:
157157
\begin{itemize}
158158
\item $\phi$ is locally constant on $G(\A_N^f)$ and $C^\infty$ on $G(N_\infty)$. In other words, for every $g_\infty$, $\phi(-,g_\infty)$ is locally constant, and for every $g_f$, $\phi(g_f,-)$ is smooth.
159159
\item $\phi$ is left-invariant under $G(N)$;
@@ -211,7 +211,7 @@ \section{Galois representations}
211211

212212
The big theorem, which again we are far from even \emph{stating} right now, is
213213

214-
\begin{theorem}\label{Galois_representation_from_automorphic_representation_on_GL_2_form}\uses{automorphic_representation,Shimura_varieties}\notready Given an automorphic representation $\pi$ for an inner form of $\GL_2$ over a totally real field and with reflex field~$E$, such that $\pi$ is weight 2 discrete series at every infinite place, there exists a compatible family of 2-dimensional Galois representations associated to $\pi$, with $S$ being the places at which $\pi$ is ramified, and $F_{\p}(X)$ being the monic polynomial with roots the two Satake parameters for $\pi$ at $\p$.
214+
\begin{theorem}\label{Galois_representation_from_automorphic_representation_on_GL_2_form}\uses{automorphic_representation,Shimura_varieties,compatible_family}\notready Given an automorphic representation $\pi$ for an inner form of $\GL_2$ over a totally real field and with reflex field~$E$, such that $\pi$ is weight 2 discrete series at every infinite place, there exists a compatible family of 2-dimensional Galois representations associated to $\pi$, with $S$ being the places at which $\pi$ is ramified, and $F_{\p}(X)$ being the monic polynomial with roots the two Satake parameters for $\pi$ at $\p$.
215215
\end{theorem}
216216

217217
\section{Algebraic geometry}

0 commit comments

Comments
 (0)