You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-- have this2 := @Continuous.prod_map R M R M τR ((TopologicalSpace.coinduced Prod.fst (actionTopology R (M × N)))) τR aM id id ?_ ?_
252
+
-- swap; fun_prop
253
+
-- swap; sorry -- action top ≤ coinduced Prod.fst (action)
254
+
-- convert this2
255
+
-- sorry -- action top on M now equals coinduced Prod.fst
256
+
-- sorry -- same
257
+
-- -- so we're going around in circles
258
+
-- sorry
259
259
-- let τ2 : TopologicalSpace M := (actionTopology R (M × N)).induced (fun m ↦ (m, 0))
260
260
-- have moo : τ1 = τ2 := by
261
261
-- unfold_let
@@ -270,7 +270,7 @@ lemma prod [MulOneClass.{0} R] : IsActionTopology.{0} R (M × N) := by
270
270
-- ·
271
271
-- sorry
272
272
-- sorry
273
-
· apply actionTopology_le
273
+
-- · apply actionTopology_le
274
274
-- --have foo : @Continuous (M × N) (M × N) _ _ _ := @Continuous.prod_map M N M N (σMN.coinduced Prod.fst) (σMN.coinduced Prod.snd) aM aN id id ?_ ?_-- Z * W -> X * Y
275
275
-- -- conjecture: pushforward of σMN is continuous
276
276
-- -- ⊢ instTopologicalSpaceProd ≤ σMN
@@ -499,3 +499,5 @@ instance Module.topologicalRing : @TopologicalRing D (Module.rtopology A D) _ :=
0 commit comments