|
| 1 | +from ctypes import POINTER, Structure, c_int32, c_void_p, c_uint64 |
| 2 | +import ctypes |
| 3 | +import sys |
| 4 | +import os |
| 5 | + |
| 6 | +# 调整路径以导入 operatorspy 模块 |
| 7 | +sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", ".."))) |
| 8 | +from operatorspy import ( |
| 9 | + open_lib, |
| 10 | + to_tensor, |
| 11 | + DeviceEnum, |
| 12 | + infiniopHandle_t, |
| 13 | + infiniopTensorDescriptor_t, |
| 14 | + create_handle, |
| 15 | + destroy_handle, |
| 16 | + check_error, |
| 17 | +) |
| 18 | + |
| 19 | +from operatorspy.tests.test_utils import get_args |
| 20 | +from enum import Enum, auto |
| 21 | +import torch |
| 22 | + |
| 23 | + |
| 24 | +class Inplace(Enum): |
| 25 | + OUT_OF_PLACE = auto() |
| 26 | + # 对于 concat 算子,通常不支持 in-place 操作,因此这里只保留 OUT_OF_PLACE |
| 27 | + # 你可以根据实际需求扩展其他选项 |
| 28 | + # INPLACE_A = auto() |
| 29 | + # INPLACE_B = auto() |
| 30 | + |
| 31 | + |
| 32 | +class ConcatDescriptor(Structure): |
| 33 | + _fields_ = [("device", c_int32),] |
| 34 | + |
| 35 | + |
| 36 | +infiniopConcatDescriptor_t = POINTER(ConcatDescriptor) |
| 37 | + |
| 38 | + |
| 39 | +def concat_py(*tensors, dim=0): |
| 40 | + """使用 PyTorch 进行拼接的辅助函数""" |
| 41 | + return torch.cat(tensors, dim=dim) |
| 42 | + |
| 43 | + |
| 44 | +def test( |
| 45 | + lib, |
| 46 | + handle, |
| 47 | + torch_device, |
| 48 | + c_shape, |
| 49 | + axis, |
| 50 | + input_shapes, |
| 51 | + tensor_dtype=torch.float32, |
| 52 | + inplace=Inplace.OUT_OF_PLACE, |
| 53 | +): |
| 54 | + """ |
| 55 | + 测试 concat 算子 |
| 56 | + """ |
| 57 | + print( |
| 58 | + f"Testing Concat on {torch_device} with output_shape:{c_shape}, input_shapes:{input_shapes}, axis:{axis}, dtype:{tensor_dtype}, inplace: {inplace.name}" |
| 59 | + ) |
| 60 | + |
| 61 | + # 创建输入张量 |
| 62 | + inputs = [torch.rand(shape, dtype=tensor_dtype).to(torch_device) for shape in input_shapes] |
| 63 | + |
| 64 | + for idx, tensor in enumerate(inputs): |
| 65 | + print(f"Input {idx}:") |
| 66 | + print(tensor) |
| 67 | + print("-" * 50) |
| 68 | + |
| 69 | + # 创建输出张量 |
| 70 | + if inplace == Inplace.OUT_OF_PLACE: |
| 71 | + c = torch.zeros(c_shape, dtype=tensor_dtype).to(torch_device) |
| 72 | + else: |
| 73 | + # 对于 concat,通常不支持 in-place 操作,因此这里简化为 OUT_OF_PLACE |
| 74 | + c = torch.zeros(c_shape, dtype=tensor_dtype).to(torch_device) |
| 75 | + |
| 76 | + # 使用 PyTorch 进行拼接,作为参考答案 |
| 77 | + ans = concat_py(*inputs, dim=axis) |
| 78 | + |
| 79 | + print("ans:",ans) |
| 80 | + print("-" * 50) |
| 81 | + |
| 82 | + # 将张量转换为 infiniop 所需的格式 |
| 83 | + input_tensors = [to_tensor(t, lib) for t in inputs] |
| 84 | + c_tensor = to_tensor(c, lib) if inplace == Inplace.OUT_OF_PLACE else to_tensor(c, lib) |
| 85 | + |
| 86 | + # 创建 Concat 描述符 |
| 87 | + descriptor = infiniopConcatDescriptor_t() |
| 88 | + |
| 89 | + # 准备输入描述符数组 |
| 90 | + num_inputs = len(input_tensors) |
| 91 | + input_desc_array_type = infiniopTensorDescriptor_t * num_inputs |
| 92 | + input_desc_array = input_desc_array_type(*[t.descriptor for t in input_tensors]) |
| 93 | + |
| 94 | + # 创建描述符 |
| 95 | + check_error( |
| 96 | + lib.infiniopCreateConcatDescriptor( |
| 97 | + handle, |
| 98 | + ctypes.byref(descriptor), |
| 99 | + c_tensor.descriptor, # 使用 c_tensor 的描述符 |
| 100 | + input_desc_array, # 输入张量描述符数组 |
| 101 | + c_uint64(num_inputs), |
| 102 | + c_uint64(axis), |
| 103 | + ) |
| 104 | + ) |
| 105 | + |
| 106 | + print("c1:",c) |
| 107 | + print("-" * 50) |
| 108 | + |
| 109 | + # 执行拼接操作 |
| 110 | + input_data_ptrs = (c_void_p * num_inputs)(*[t.data for t in input_tensors]) |
| 111 | + check_error( |
| 112 | + lib.infiniopConcat( |
| 113 | + descriptor, |
| 114 | + c_tensor.data, |
| 115 | + ctypes.cast(input_data_ptrs, POINTER(c_void_p)), |
| 116 | + None # 假设不需要流 |
| 117 | + ) |
| 118 | + ) |
| 119 | + |
| 120 | + print("c2:",c) |
| 121 | + print("-" * 50) |
| 122 | + |
| 123 | + # 验证结果 |
| 124 | + assert torch.allclose(c, ans, atol=0, rtol=1e-5), "Concat result does not match PyTorch's result." |
| 125 | + |
| 126 | + # 销毁描述符 |
| 127 | + check_error(lib.infiniopDestroyConcatDescriptor(descriptor)) |
| 128 | + |
| 129 | + |
| 130 | +def test_cpu(lib, test_cases): |
| 131 | + device = DeviceEnum.DEVICE_CPU |
| 132 | + handle = create_handle(lib, device) |
| 133 | + for c_shape, axis, input_shapes, inplace in test_cases: |
| 134 | + test(lib, handle, "cpu", c_shape, axis, input_shapes, inplace=inplace) |
| 135 | + destroy_handle(lib, handle) |
| 136 | + |
| 137 | + |
| 138 | +def test_cuda(lib, test_cases): |
| 139 | + device = DeviceEnum.DEVICE_CUDA |
| 140 | + handle = create_handle(lib, device) |
| 141 | + for c_shape, axis, input_shapes, inplace in test_cases: |
| 142 | + test(lib, handle, "cuda", c_shape, axis, input_shapes, inplace=inplace) |
| 143 | + destroy_handle(lib, handle) |
| 144 | + |
| 145 | + |
| 146 | +def test_bang(lib, test_cases): |
| 147 | + import torch_mlu |
| 148 | + |
| 149 | + device = DeviceEnum.DEVICE_BANG |
| 150 | + handle = create_handle(lib, device) |
| 151 | + for c_shape, axis, input_shapes, inplace in test_cases: |
| 152 | + test(lib, handle, "mlu", c_shape, axis, input_shapes, inplace=inplace) |
| 153 | + destroy_handle(lib, handle) |
| 154 | + |
| 155 | + |
| 156 | +if __name__ == "__main__": |
| 157 | + # 定义测试用例 |
| 158 | + test_cases = [ |
| 159 | + # (output_shape, axis, input_shapes, inplace) |
| 160 | + |
| 161 | + ((6, 3), 0, [(2, 3), (4, 3)], Inplace.OUT_OF_PLACE), |
| 162 | + # ((3, 6), 1, [(3, 2), (3, 4)], Inplace.OUT_OF_PLACE), |
| 163 | + # ((3, 7), 1, [(3, 2), (3, 4), (3,1)], Inplace.OUT_OF_PLACE), |
| 164 | + # ((3, 3, 10), 2, [(3, 3, 4), (3, 3, 6)], Inplace.OUT_OF_PLACE), |
| 165 | + # ((1, 1), 0, [(1, 1)], Inplace.OUT_OF_PLACE), |
| 166 | + # ((4, 5, 6), 0, [(1, 5, 6), (3, 5, 6)], Inplace.OUT_OF_PLACE), |
| 167 | + # ((2, 3, 6), 2, [(2, 3, 2), (2, 3, 4)], Inplace.OUT_OF_PLACE), |
| 168 | + |
| 169 | + # 添加更多测试用例以覆盖不同的维度和拼接轴 |
| 170 | + # ((2, 10, 3), 1, [(2, 5, 3), (2, 2, 3),(2,3,3)], Inplace.OUT_OF_PLACE), # 拼接沿第二维 |
| 171 | + ] |
| 172 | + |
| 173 | + args = get_args() |
| 174 | + lib = open_lib() |
| 175 | + |
| 176 | + # 绑定 C++ 函数 |
| 177 | + # 创建 Concat 描述符 |
| 178 | + lib.infiniopCreateConcatDescriptor.restype = c_int32 |
| 179 | + lib.infiniopCreateConcatDescriptor.argtypes = [ |
| 180 | + infiniopHandle_t, |
| 181 | + POINTER(infiniopConcatDescriptor_t), |
| 182 | + infiniopTensorDescriptor_t, # 输出张量描述符 |
| 183 | + POINTER(infiniopTensorDescriptor_t), # 输入张量描述符数组 |
| 184 | + c_uint64, # 输入张量数量 |
| 185 | + c_uint64, # 拼接轴 |
| 186 | + ] |
| 187 | + |
| 188 | + # 执行 Concat |
| 189 | + lib.infiniopConcat.restype = c_int32 |
| 190 | + lib.infiniopConcat.argtypes = [ |
| 191 | + infiniopConcatDescriptor_t, |
| 192 | + c_void_p, # 输出数据指针 |
| 193 | + POINTER(c_void_p), # 输入数据指针数组 |
| 194 | + c_void_p, # 流(假设为 NULL) |
| 195 | + ] |
| 196 | + |
| 197 | + # 销毁 Concat 描述符 |
| 198 | + lib.infiniopDestroyConcatDescriptor.restype = c_int32 |
| 199 | + lib.infiniopDestroyConcatDescriptor.argtypes = [ |
| 200 | + infiniopConcatDescriptor_t, |
| 201 | + ] |
| 202 | + |
| 203 | + # 根据命令行参数执行测试 |
| 204 | + if args.cpu: |
| 205 | + test_cpu(lib, test_cases) |
| 206 | + if args.cuda: |
| 207 | + test_cuda(lib, test_cases) |
| 208 | + if args.bang: |
| 209 | + test_bang(lib, test_cases) |
| 210 | + if not (args.cpu or args.cuda or args.bang): |
| 211 | + test_cpu(lib, test_cases) |
| 212 | + |
| 213 | + print("\033[92mConcat Test passed!\033[0m") |
| 214 | + |
| 215 | + |
| 216 | + |
| 217 | + |
0 commit comments