|
32 | 32 | ) |
33 | 33 |
|
34 | 34 | from .common import cache, load_data_description, load_data_from_cache, preprocess |
35 | | -from .downloaders import ( |
36 | | - download_and_read_csv, |
37 | | - download_kaggle_files, |
38 | | - load_openml, |
39 | | - retrieve, |
40 | | -) |
| 35 | +from .downloaders import download_and_read_csv, load_openml, retrieve |
41 | 36 |
|
42 | 37 |
|
43 | 38 | @preprocess |
@@ -175,27 +170,6 @@ def load_airline_depdelay( |
175 | 170 | return {"x": x, "y": y}, data_description |
176 | 171 |
|
177 | 172 |
|
178 | | -@cache |
179 | | -def load_bosch( |
180 | | - data_name: str, data_cache: str, raw_data_cache: str, dataset_params: Dict |
181 | | -) -> Tuple[Dict, Dict]: |
182 | | - data_filename = "train_numeric.csv.zip" |
183 | | - |
184 | | - data_path = download_kaggle_files( |
185 | | - "competition", |
186 | | - "bosch-production-line-performance", |
187 | | - [data_filename], |
188 | | - raw_data_cache, |
189 | | - )[data_filename] |
190 | | - |
191 | | - data = pd.read_csv(data_path, index_col=0, compression="zip", dtype=np.float32) |
192 | | - y = data.iloc[:, -1].to_numpy(dtype=np.float32) |
193 | | - x = data.drop(labels=[data.columns[-1]], axis=1) |
194 | | - |
195 | | - data_desc = {"default_split": {"test_size": 0.2, "random_state": 77}} |
196 | | - return {"x": x, "y": y}, data_desc |
197 | | - |
198 | | - |
199 | 173 | @cache |
200 | 174 | def load_hepmass( |
201 | 175 | data_name: str, data_cache: str, raw_data_cache: str, dataset_params: Dict |
@@ -833,7 +807,6 @@ def load_gist( |
833 | 807 | # classification |
834 | 808 | "airline_depdelay": load_airline_depdelay, |
835 | 809 | "a9a": load_a9a, |
836 | | - "bosch": load_bosch, |
837 | 810 | "codrnanorm": load_codrnanorm, |
838 | 811 | "covtype": load_covtype, |
839 | 812 | "creditcard": load_creditcard, |
|
0 commit comments