-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclique_clustering.py
229 lines (173 loc) · 5.79 KB
/
clique_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from __future__ import print_function
import networkx as nx
class Status:
def __init__(self):
self.com2nodes = {}
self.internals = {}
self.node2com = {}
self.degrees = {}
self.n_edges = 0
def init(self, graph, part=None):
self.n_edges = graph.size()
self.internals = {}
self.com2nodes = {}
self.node2com = {}
self.com_mods = {}
self.degrees = {}
count = 0
for node in graph.nodes():
self.node2com[node] = count
if not count in self.com2nodes:
self.com2nodes[count] = set()
self.com_mods[count] = 0
self.com2nodes[count].add(node)
deg = float(graph.degree(node))
if deg < 0:
error = "Bad graph type ({})".format(type(graph))
raise ValueError(error)
self.degrees[count] = deg
self.internals[count] = 0
count += 1
class State:
def __init__(self):
self.com_t = None
self.com_s = None
self.internals_t = None
self.internals_s = None
self.degrees_t = None
self.degrees_s = None
self.mod_s = None
self.mod_t = None
self.nodes_s = None
self.nodes_t = None
self.moved = []
def reverse(self, status):
status.internals[self.com_t] = self.internals_t
status.internals[self.com_s] = self.internals_s
status.degrees[self.com_t] = self.degrees_t
status.degrees[self.com_s] = self.degrees_s
status.com_mods[self.com_s] = self.mod_s
status.com_mods[self.com_t] = self.mod_t
status.com2nodes[self.com_t] = self.nodes_t
status.com2nodes[self.com_s] = self.nodes_s
for v in self.moved:
status.node2com[v] = self.com_s
def merge_coms(l_comA, l_comB, G, status, state=None):
"""
Merge communities.
"""
if l_comA == l_comB:
return l_comA
comA = status.com2nodes[l_comA]
comB = status.com2nodes[l_comB]
if len(comA) > len(comB):
target = comA
t_label = l_comA
source = comB
s_label = l_comB
else:
target = comB
t_label = l_comB
source = comA
s_label = l_comA
if state:
state.com_t = t_label
state.com_s = s_label
state.internals_s = status.internals[s_label]
state.internals_t = status.internals[t_label]
state.degrees_s = status.degrees[s_label]
state.degrees_t = status.degrees[t_label]
state.mod_s = status.com_mods[s_label]
state.mod_t = status.com_mods[t_label]
state.nodes_s = status.com2nodes[s_label].copy()
state.nodes_t = status.com2nodes[t_label].copy()
diff = source - target
for v in diff:
degree = G.degree(v)
in_degree = 0
for n in G.neighbors(v):
in_degree += 1 if status.node2com[n] == t_label else 0
status.internals[t_label] += in_degree
status.degrees[t_label] += degree
status.node2com[v] = t_label
status.com2nodes[t_label].add(v)
if state:
state.moved.append(v)
del status.internals[s_label]
del status.degrees[s_label]
del status.com2nodes[s_label]
del status.com_mods[s_label]
return t_label
def cliq2com(G, clique, status):
'''
Merge clique into community.
This method takes set of points and merges them
into community, updating status along the way.
-----------------------------------------------
Parmeters:
[clique]: set of vertices
[G]: NetworkX's DiGraph
[status]: graph's Status
'''
communities = list(set([status.node2com[v] for v in clique]))
last = communities[0]
for com in communities:
last = merge_coms(last, com, G, status)
return last
def modularity(status, changed=None):
'''
(Re)calculate modularity.
'''
if not changed:
changed = set(status.node2com.values())
links = float(status.n_edges)
result = 0.
for community in changed:
degree = status.degrees.get(community, 0.)
in_degree = status.internals.get(community, 0.)
status.com_mods[community] = in_degree / links - ((degree / (2. * links)) ** 2)
return sum(status.com_mods.values())
def cluster(G):
max_mod = -1
touched = set()
status = Status()
status.init(G)
polys = [frozenset(c) for c in nx.find_cliques(G) if len(c) > 2]
polys.sort(key=lambda p: -len(p))
print('Phase 1... {} cliques'.format(len(polys)))
for p in polys:
inter = 0
for v in p:
inter += 1 if v in touched else 0
if len(p) - inter + 1 < 3:
continue
touched = touched.union(p)
new_com = cliq2com(G, p, status)
new_mod = modularity(status, [new_com])
if new_mod > max_mod:
max_mod = new_mod
status = status
else:
continue
merged = set()
visited_pairs = set()
coms = set(status.node2com.values())
print('Phase 2... {} communities'.format(len(coms)))
for com in coms:
if com in merged:
continue
for com_ in coms:
if com == com_ or com_ in merged or frozenset([com, com_]) in visited_pairs:
continue
visited_pairs.add(frozenset([com, com_]))
state = State()
new_com = merge_coms(com, com_, G, status, state)
new_mod = modularity(status, [new_com])
if new_mod > max_mod:
max_mod = new_mod
merged.add(com + com_ - new_com)
break
else:
state.reverse(status)
print('Final modularity: {}'.format(modularity(status, 0)))
return status.node2com