-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathslides.tex
401 lines (369 loc) · 14.1 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
\documentclass[serif,mathserif,professionalfont,10pt]{beamer}
\usepackage{ucs}
\usepackage[utf8x]{inputenc}
\usepackage{etex}
\usepackage{graphicx}
\usepackage{textgreek}
\usepackage{amssymb}
\usepackage{color}
\definecolor{grey}{gray}{0.6}
\definecolor{slidered}{rgb}{1,0,0}
\definecolor{slidegreen}{rgb}{0,1,0}
\definecolor{slideblue}{rgb}{0,0,1}
\definecolor{slidepurple}{rgb}{0,1,1}
\definecolor{slidegray}{rgb}{0.5,0.5,0.5}
\definecolor{slideivory}{rgb}{1,1,0.9}
\definecolor{slideblueb}{rgb}{0,0.5,0.8}
\newcommand{\highlight}[1]{\textcolor{slidered}{#1}}
\newcommand{\sred}[1]{\textcolor{slidered}{#1}}
\newcommand{\sblue}[1]{\textcolor{slideblue}{#1}}
\newcommand{\sblueb}[1]{\textcolor{slideblueb}{#1}}
\newcommand{\sgreen}[1]{\textcolor{slidegreen}{#1}}
\newcommand{\sgray}[1]{\textcolor{slidegray}{#1}}
\newcommand{\spurple}[1]{\textcolor{purple}{#1}}
\beamertemplatenavigationsymbolsempty
\usetheme{Boadilla}
\usecolortheme{beaver}
\makeatletter
\def\mkcommand#1{\expandafter\gdef\csname #1\endcsname}
\makeatother
\def\module#1{\message{#1}\section{#1}\sectlabel{#1}}
\newenvironment{ModuleHead}{\par\begingroup\tiny}{\endgroup\par\medskip}
% \DeclareUnicodeCharacter{7472}{\ensuremath{^\mathsf{D}}} % MODIFIER LETTER CAPITAL D
% \DeclareUnicodeCharacter{9723}{\ensuremath{\square}} % WHITE MEDIUM SQUARE
% \DeclareUnicodeCharacter{119920}{\ensuremath{\mathbf{I}}} % MATHEMATICAL BOLD ITALIC CAPITAL I
% \DeclareUnicodeCharacter{119991}{\ensuremath{_\mathsf{B}}} % MATHEMATICAL SCRIPT SMALL B
% \DeclareUnicodeCharacter{120008}{\ensuremath{_\mathsf{S}}} % MATHEMATICAL SCRIPT SMALL S
% \DeclareUnicodeCharacter{120001}{\ensuremath{_\mathsf{L}}} % MATHEMATICAL SCRIPT SMALL L
% \DeclareUnicodeCharacter{119997}{\ensuremath{_\mathsf{H}}} % MATHEMATICAL SCRIPT SMALL H
% \DeclareUnicodeCharacter{8348}{\ensuremath{_\mathsf{t}}} % MATHEMATICAL SCRIPT SMALL T
% \DeclareUnicodeCharacter{8339}{\ensuremath{_\mathsf{x}}} % MATHEMATICAL SCRIPT SMALL X
% \DeclareUnicodeCharacter{119925}{\ensuremath{\mathcal{N}}} % MATHEMATICAL BOLD ITALIC CAPITAL N
% \DeclareUnicodeCharacter{119924}{\ensuremath{\mathcal{M}}} % MATHEMATICAL BOLD ITALIC CAPITAL M
% \DeclareUnicodeCharacter{7484}{\ensuremath{\mathsf{O}}} % MODIFIER LETTER CAPITAL O
% \DeclareUnicodeCharacter{9678}{\ensuremath{\mathsf{BULLSEYE}}} % BULLSEYE
% \DeclareUnicodeCharacter{8667}{\ensuremath{\Rrightarrow}} % rightwards triple arrow
% \DeclareUnicodeCharacter{8255}{\ensuremath{\smile}} % undertie, subscript-converse
% \DeclareUnicodeCharacter{8265}{\ensuremath{! \! ? }} % exclamation question mark
% \DeclareUnicodeCharacter{9632}{\ensuremath{ \square }} % black square
% \DeclareUnicodeCharacter{9679}{\ensuremath{ \boldsymbol{\cdot} }} % black circle
% \DeclareUnicodeCharacter{9675}{\ensuremath{ \boldsymbol{\circ} }} % white circle
\title{A tale of theories and data-structures}
\author[Carette, Al-hassy, Kahl]{Jacques Carette, Musa Al-hassy, Wolfram Kahl}
\institute[McMaster]{McMaster University, Hamilton}
\newtheorem{claim}{Claim}
\begin{document}
\frame{\titlepage}
\begin{frame}
\frametitle{Lists and Monoids}
\begin{claim}
A \sred{List} is a \sred{Free Monoid}
\end{claim}
What does that really mean? \\
\pause
\vspace*{4mm}
\sred{Fancy explanation}: The functor from the category \textsf{Types} of \sgreen{types and function}, with
\texttt{List} as its object mapping and \texttt{map} for homomorphism,
to the category \textsf{Monoid} of \sgreen{monoids and monoid homomorphisms}, is \sblue{left
adjoint} to the forgetful functor (from \textsf{Monoid} to \textsf{Types}).
%
% What is the difference between ``the category (types, functions)'' and ``Set''?
%
\pause
\vspace*{4mm}
\texttt{List} (equipped with constructors \texttt{[]}, \texttt{::} and
functions \texttt{map}, \texttt{++},
\texttt{singleton}, and \texttt{foldr}) is the
\sblue{language of monoids}. In other words, \texttt{List}
is the canonical term syntax for
\sblue{computing with monoids}.
\pause
\vspace*{4mm}
Why on earth would we care about that? Let's see!
% Go to Agda code. Show definitions of
% Monoid. Monoid Homomorphism. Forgetful functor.
% Then definition of Free and the Adjunction.
\vfill
\end{frame}
\begin{frame}
\frametitle{Non-categorical version}
The requirements roughly translate to\\
Monoid:
\begin{itemize}
\item Need a \emph{container} $C$ of $\alpha$
\item with a distinguished container $ε$ devoid of $\alpha$'s
\item a binary operation $*$ that puts two containers together
\item such that $ε$ is a left/right unit for $*$.
\end{itemize}
Functor:
\begin{itemize}
\item A way to apply a $(\alpha → \beta)$ function to a $C\, \alpha$ to get a $C \, \beta$
\item which ``plays well'' with $\mathsf{id}, ∘, ≡$ and $*$.
\end{itemize}
Adjunction:
\begin{itemize}
\item An operation \texttt{singleton} embedding an $\alpha$ as a container $C \, \alpha$
\item an operation \texttt{foldr} (over arbitrary Monoid)
\item such that both operations ``play well'' with each other.
\end{itemize}
Extremely handy:
\begin{itemize}
\item Induction principle
\end{itemize}
\end{frame}
% Notice how I never said ``Monad'' ?
%
% Monads ≅ closure operators
%
\begin{frame}
\frametitle{The plot thickens}
Given an arbitrary type $A$ : \\ \vspace*{4mm}
\begin{tabular}{lll}
\textbf{Theory} & \textbf{Free Structure} & CoFree \\ \hline
Carrier & Identity $A$ & Identity $A$ \\
Pointed & Maybe $A$ & --\\ \hline
Unary & Eventually $A$, $ℕ × A$ & ? \\
Involutive & $A ⊎ A$ & A × A \\ \hline
Magma & Tree $A$ & ? \\
Semigroup & NEList $A$ & ? \\ \hline
Monoid & List\, $A$ & ? \\
Left Unital Semigroup & List $A × ℕ$ & ? \\
Right Unital Semigroup & $ℕ ×$ List $A$ & ? \\ \hline
\end{tabular}\\ \vspace*{4mm}
\pause
What is the \sblue{Free Structure}? It is ``the''
\sred{\textbf{term language in normal form}} associated to the theory.\\
\end{frame}
\begin{frame}
\frametitle{Benefits}
Benefits of the formal approach:
\begin{itemize}
\item Obvious: Dispell silly conjectures/errors
\item Discover some neat relationships between algebraic theories and data-structures
\item \texttt{fold} (aka the counit)
\item Induction
\end{itemize} \vspace*{4mm}
\pause
Examples: counit for Unary, Involutive
\vfill
\end{frame}
\begin{frame}
\frametitle{Extending the tale}
Given an arbitrary type A : \\ \vspace*{4mm}
\begin{tabular}{ll}
\textbf{Theory} & \textbf{Free Structure} \\ \hline
Carrier & Identity $A$ \\
Pointed & Maybe $A$ \\ \hline
Unary & $ℕ × A$ \\
Involutive & $A ⊎ A$ \\ \hline
Magma & Tree $A$ \\
Semigroup & NEList $A$ \\ \hline
Monoid & List $A$ \\
Left Unital Semigroup & List $A × ℕ$ \\
Right Unital Semigroup & $ℕ ×$ List $A$ \\ \hline
\sred{Commutative Monoid} & \sred{?} \\
\sred{Group} & \sred{?} \\
\sred{Abelian Group} & \sred{?} \\
\sred{Idempotent Comm. Monoid} & \sred{?} \\
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{Commutative Monoid and Bag}
\begin{definition}
A \emph{Bag} (over a type A) is an unordered finite collection
of $x$ where $x\,:\,A$.
\end{definition}
\pause
Implementation?
\begin{itemize}
\item<2-> Inductive type
\begin{itemize}
\item<3-> Ordered!
\end{itemize}
\item<4-> $A \rightarrow \mathbb{N}$
\begin{itemize}
\item<5-> No finite support!
\end{itemize}
\item<6-> $A \rightarrow \mathbb{N}$ plus finite support
\begin{itemize}
\item<7-> ``Finite support'' is hard to say constructively $\ldots$
\item<8-> Summing over all elements of $A$ is even harder $\ldots$
\item<9-> Can build a decidable equiv. relation on $A$ from $A \rightarrow \mathbb{N}$!
\end{itemize}
\item<10-> $\texttt{List}\ A$ up to bag-equality (aka permutations)
\begin{itemize}
\item<11-> almost works!
\item<12-> Commutative Monoid uses $\equiv$
\end{itemize}
\end{itemize}
\begin{theorem}[Within Martin-Löf Type Theory]<13->
There's no \emph{free} functor from Types to Commutative Monoids using $\equiv$.
% $\neg\exists$ \emph{left adjoint} to Commutative
% Monoids over an arbitrary type (in MLTT).
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{Change the question!}
\begin{definition}
A \emph{DBag} over a type $A$ with dec. $=$ is an unordered
collection of $x$ where $x~:~A$.
\end{definition}
\pause
\begin{definition}
A \emph{Bag} over a setoid $A$ is an unordered
collection of $x$ where $x : \texttt{Carrier}\, A$.
\end{definition}
\pause
Implementation attempts:
\begin{itemize}
\item<4->Nils Anders Danielsson's
\textit{Bag Equivalence via a Proof-Relevant Membership Relation}
\begin{itemize}
\item<5->Too many parts over $\equiv$
\end{itemize}
\item<6->Erik Palmgren's \textit{Setoid Families}
\begin{itemize}
\item<7->Extremely complex, forget the actual dead end.
\end{itemize}
\item<8->Mimick above with our own Proof-Relevant $\in$ over
Setoid
\begin{itemize}
\item<9->Proof that \texttt{fold} well-behaved very hard.
\end{itemize}
\item<10->Bag-equality in new version of Agda!
\begin{itemize}
\item<11->Still assumes $\equiv$.
\end{itemize}
\item<12->Experimental library with permutations over tables
$\newline\Rightarrow$ proof that \texttt{fold} is well-behaved
\hfill \pause\alert{Success!}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Key ingredients of Bag}
Distilling the insights from $\sim \! 1000$ lines of Agda \pause
\begin{itemize}
\item<1-> Internalize length of ``list'' into a record \texttt{Seq} ---\texttt{subst} is evil!
\item<2-> Table of A is $\texttt{Fin}\, \mathbb{N} \rightarrow A$ (finite
support)
\item<3-> Equivalence of sequences $S$ and $T$ is
\begin{itemize}
\item<4-> A permutation between $|S|$ and $|T|$, i.e.
\item<5-> An equivalence between $\texttt{Fin}~ |S|$ and $\texttt{Fin}~ |T|$
\item<6-> A proof that permuting the elements of $T$ gives a
pointwise Setoid-equivalence to those of $S$.
\end{itemize}
\item<7-> Use previous infrastructure built to move between proofs
on permutations and proofs on types (work on $\Pi$ languages
w/ Amr Sabry)
\item<8-> Create an abstract interface for Multiset, MultisetHom and
``functorial'' MultisetHom
\item<9-> Satisfies interface $\Rightarrow$\ left
adjoint to Commutative Monoid
\item<10-> Bag satisfies the interface
\item<11-> Use \texttt{abstract} in key places to prevent normalization
in proof goals
\item<12-> Never use \texttt{subst} ---even when building the identity permutation
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Extending the tale, take 2}
Given an arbitrary type A : \\ \vspace*{4mm}
\begin{tabular}{llll}
\textbf{Theory} & \textbf{Structure} & Over & Equality \\ \hline
Carrier & Identity A & Type & $\equiv$ \\
Pointed & Maybe A & Type & $\equiv$\\ \hline
Unary & ℕ × A & Type & $\equiv$\\
Involutive & A ⊎ A & Type & $\equiv$ \\ \hline
Magma & Tree A & Type & $\equiv$\\
Semigroup & NEList A & Type & $\equiv$\\ \hline
Monoid & List A & Type & $\equiv$\\
Left Unital Semigroup & List A × ℕ & Type & $\equiv$\\
Right Unital Semigroup & ℕ × List A & Type & $\equiv$\\ \hline
Commutative Monoid & Bag & Setoid & proof-relevant permutations \\
Group & ? & ? & ? \\
Abelian Group & Hybrid Sets & Setoid & proof-relevant permutations\\
Idemp. Comm. Monoid & Set & Setoid & logical equivalence \\
\end{tabular}
\end{frame}
\begin{frame}
\frametitle{What's the deal with those axioms?}
\begin{itemize}
\item Works easily:
\begin{itemize}
\item Associativity: $\forall x, y, z.\ x * (y * z) \equiv (x * y) *z$;
\item Left-unit: $\forall x.\ e * x \equiv x$;
\item Right-unit: $\forall x.\ x * e \equiv x$
\item Involutive: $\forall x.\ inv (inv x) \equiv x$
\end{itemize}
\item Hard:
\begin{itemize}
\item Commutativity: $\forall x, y.\ x * y \equiv y * x$
\end{itemize}
\item Very Hard:
\begin{itemize}
\item Idempotence: $\forall x.\ x * x \equiv x$
\end{itemize}
\end{itemize}
\pause
Found the secret ingredient in \textit{Algebraic Theories in Monoidal
Categories} by L. Mauri: structural context rules (weakening,
exchange, contraction).
\end{frame}
\begin{frame}
\frametitle{More tale to tell}
\begin{itemize}
\item $\bot$, $\top$, $\mathbb{B}$, $\mathbb{N}$, $\mathbb{Z}$ show up
as \sred{initial objects}.
\item Bivariate (but $\times$ and $\uplus$ are adjoint to diagonal,
not forgetful functor)
\item Indexed sets of operations
\end{itemize}
\end{frame}
% Where do these (math theories) show up?
\begin{frame}
\frametitle{Potential data-structures}
\sred{left-zero monoid}, pointed unary, idempotent unary, commutative
magma, pointed magma, quasigroup, loop, semilattice, medial magma,
left semimedial magma, left distributive magma, idempotent magma,
zeropotent magma, left unary magma, Steiner magma, null semigroup, BCI algebra, BCK
algebra, squag, sloop, Moufang quasigroup, loop, left shelf, shelf,
rack, spindle, quandle, Kei, involutive semigroup, band, rectangular
band, hemigroup, pseudo inverse algebra, ringoid, left near semiring,
near semiring, semifield, semiring, semirng, pre-dioid, dioid, star semiring,
idempotent dioid, ring, commutative ring, idempotent semiring, Stone algebra,
Kleene lattice, Kleene algebra, Heyting algebra, Goedel algebra, ortho
lattice, directoid, semiheap, idempotent semiheap, heap, meadow, wheel.
\end{frame}
% Where do these (data structures) show up?
\begin{frame}
\frametitle{Structures looking for a home}
Difference list, stack, queue, finite map, rose tree, digraph,
multigraph, partitions, oriented cycles, colorings, tri-colorings,
hedges, derangements, ballots, commutative parenthesizations, linear
order, permutations, even permutations, chains, oriented sets, even
sets, octopus, vertebrae.
\end{frame}
\begin{frame}
\frametitle{Math and CS}
Given an arbitrary type A : \\ \vspace*{4mm}
\begin{tabular}{llll}
\textbf{Theory} & \textbf{Structure} & Over & Equality \\ \hline
Carrier & Identity A & Type & $\equiv$ \\
Pointed & Maybe A & Type & $\equiv$\\ \hline
Unary & ℕ × A & Type & $\equiv$\\
Involutive & A ⊎ A & Type & $\equiv$ \\ \hline
Magma & Tree A & Type & $\equiv$\\
Semigroup & NEList A & Type & $\equiv$\\ \hline
Monoid & List A & Type & $\equiv$\\
Left Unital Semigroup & List A × ℕ & Type & $\equiv$\\
Right Unital Semigroup & ℕ × List A & Type & $\equiv$\\ \hline
Commutative Monoid & Bag & Setoid & proof-relevant permutations \\
Group & ? & ? & ? \\
Abelian Group & Hybrid Sets & Setoid & proof-relevant permutations\\
Idemp. Comm. Monoid & Set & Setoid & logical equivalence \\
\end{tabular}
\vspace*{3mm}
\url{https://github.com/JacquesCarette/TheoriesAndDataStructures}
\end{frame}
\end{document}