forked from jiangxiluning/FOTS.PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
110 lines (82 loc) · 3.35 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import json
import torch
import logging
import pathlib
import traceback
from pytorch_lightning import Trainer
from FOTS.model.model import FOTSModel
from FOTS.utils.bbox import Toolbox
import easydict
from FOTS.data_loader.data_module import ICDARDataModule
logging.basicConfig(level=logging.DEBUG, format='')
def load_model(model_path, with_gpu):
model = FOTSModel(config)
if config.data_loader.dataset == 'synth800k':
data_module = SynthTextDataModule(config)
else:
data_module = ICDARDataModule(config)
root_dir = str(pathlib.Path(config.trainer.save_dir).absolute() / config.name)
checkpoint_callback = ModelCheckpoint(dirpath=root_dir + '/checkpoints', period=1)
wandb_dir = pathlib.Path(root_dir) / 'wandb'
if not wandb_dir.exists():
wandb_dir.mkdir(parents=True, exist_ok=True)
wandb_logger = WandbLogger(name=config.name,
project='FOTS',
config=config,
save_dir=root_dir)
if not config.cuda:
gpus = 0
else:
gpus = config.gpus
trainer = Trainer(
logger=wandb_logger,
callbacks=[checkpoint_callback],
max_epochs=config.trainer.epochs,
default_root_dir=root_dir,
gpus=gpus,
accelerator='ddp',
benchmark=True,
sync_batchnorm=True,
precision=config.precision,
log_gpu_memory=config.trainer.log_gpu_memory,
log_every_n_steps=config.trainer.log_every_n_steps,
overfit_batches=config.trainer.overfit_batches,
weights_summary='full',
terminate_on_nan=config.trainer.terminate_on_nan,
fast_dev_run=config.trainer.fast_dev_run,
check_val_every_n_epoch=config.trainer.check_val_every_n_epoch)
trainer.fit(model=model, datamodule=data_module)
def main(args:argparse.Namespace):
model_path = args.model
input_dir = args.input_dir
output_dir = args.output_dir
with_image = True if output_dir else False
with_gpu = True if torch.cuda.is_available() else False
config = json.load(open(args.config))
#with_gpu = False
config = easydict.EasyDict(config)
model = FOTSModel.load_from_checkpoint(checkpoint_path=model_path,
map_location='cpu', config=config)
model = model.to('cuda:0')
model.eval()
for image_fn in input_dir.glob('*.jpg'):
try:
with torch.no_grad():
ploy, im = Toolbox.predict(image_fn, model, with_image, output_dir, with_gpu=True)
print(len(ploy))
except Exception as e:
traceback.print_exc()
if __name__ == '__main__':
logger = logging.getLogger()
parser = argparse.ArgumentParser(description='Model eval')
parser.add_argument('-m', '--model', default=None, type=pathlib.Path, required=True,
help='path to model')
parser.add_argument('-o', '--output_dir', default=None, type=pathlib.Path,
help='output dir for drawn images')
parser.add_argument('-i', '--input_dir', default=None, type=pathlib.Path, required=False,
help='dir for input images')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args = parser.parse_args()
main(args)