| 
 | 1 | +# reversing  | 
 | 2 | + | 
 | 3 | +# the kernel works by treating the array as 1d. after reversing by dimension x an element at  | 
 | 4 | +# pos [i1, i2, i3, ... , i{x},            ..., i{n}] will be at  | 
 | 5 | +# pos [i1, i2, i3, ... , d{x} - i{x} + 1, ..., i{n}] where d{x} is the size of dimension x  | 
 | 6 | + | 
 | 7 | +# out-of-place version, copying a single value per thread from input to output  | 
 | 8 | +function _reverse(input::AnyGPUArray{T, N}, output::AnyGPUArray{T, N};  | 
 | 9 | +                  dims=1:ndims(input)) where {T, N}  | 
 | 10 | +    @assert size(input) == size(output)  | 
 | 11 | +    rev_dims = ntuple((d)-> d in dims && size(input, d) > 1, N)  | 
 | 12 | +    ref = size(input) .+ 1  | 
 | 13 | +    # converts an ND-index in the data array to the linear index  | 
 | 14 | +    lin_idx = LinearIndices(input)  | 
 | 15 | +    # converts a linear index in a reduced array to an ND-index, but using the reduced size  | 
 | 16 | +    nd_idx = CartesianIndices(input)  | 
 | 17 | + | 
 | 18 | +    ## COV_EXCL_START  | 
 | 19 | +    @kernel unsafe_indices=true function kernel(input, output)  | 
 | 20 | +        offset_in = Int32(@groupsize()[1]) * (@index(Group, Linear) - 1i32)  | 
 | 21 | +        index_in = offset_in + @index(Local, Linear)  | 
 | 22 | + | 
 | 23 | +        @inbounds if index_in <= length(input)  | 
 | 24 | +            idx = Tuple(nd_idx[index_in])  | 
 | 25 | +            idx = ifelse.(rev_dims, ref .- idx, idx)  | 
 | 26 | +            index_out = lin_idx[idx...]  | 
 | 27 | +            output[index_out] = input[index_in]  | 
 | 28 | +        end  | 
 | 29 | +    end  | 
 | 30 | +    ## COV_EXCL_STOP  | 
 | 31 | + | 
 | 32 | +    nthreads = 256  | 
 | 33 | + | 
 | 34 | +    kernel(get_backend(input), nthreads)(input, output; ndrange=length(input))  | 
 | 35 | +end  | 
 | 36 | + | 
 | 37 | +# in-place version, swapping elements on half the number of threads  | 
 | 38 | +function _reverse!(data::AnyGPUArray{T, N}; dims=1:ndims(data)) where {T, N}  | 
 | 39 | +    rev_dims = ntuple((d)-> d in dims && size(data, d) > 1, N)  | 
 | 40 | +    half_dim = findlast(rev_dims)  | 
 | 41 | +    if isnothing(half_dim)  | 
 | 42 | +        # no reverse operation needed at all in this case.  | 
 | 43 | +        return  | 
 | 44 | +    end  | 
 | 45 | +    ref = size(data) .+ 1  | 
 | 46 | +    # converts an ND-index in the data array to the linear index  | 
 | 47 | +    lin_idx = LinearIndices(data)  | 
 | 48 | +    reduced_size = ntuple((d)->ifelse(d==half_dim, cld(size(data,d),2), size(data,d)), N)  | 
 | 49 | +    reduced_length = prod(reduced_size)  | 
 | 50 | +    # converts a linear index in a reduced array to an ND-index, but using the reduced size  | 
 | 51 | +    nd_idx = CartesianIndices(reduced_size)  | 
 | 52 | + | 
 | 53 | +    ## COV_EXCL_START  | 
 | 54 | +    @kernel unsafe_indices=true function kernel(data)  | 
 | 55 | +        offset_in = Int32(@groupsize()[1]) * (@index(Group, Linear) - 1i32)  | 
 | 56 | +        index_in = offset_in + @index(Local, Linear)  | 
 | 57 | + | 
 | 58 | +        @inbounds if index_in <= reduced_length  | 
 | 59 | +            idx = Tuple(nd_idx[index_in])  | 
 | 60 | +            index_in = lin_idx[idx...]  | 
 | 61 | +            idx = ifelse.(rev_dims, ref .- idx, idx)  | 
 | 62 | +            index_out = lin_idx[idx...]  | 
 | 63 | + | 
 | 64 | +            if index_in < index_out  | 
 | 65 | +                temp = data[index_out]  | 
 | 66 | +                data[index_out] = data[index_in]  | 
 | 67 | +                data[index_in] = temp  | 
 | 68 | +            end  | 
 | 69 | +        end  | 
 | 70 | +    end  | 
 | 71 | +    ## COV_EXCL_STOP  | 
 | 72 | + | 
 | 73 | +    # NOTE: we launch slightly more than half the number of elements in the array as threads.  | 
 | 74 | +    # The last non-singleton dimension along which to reverse is used to define how the array is split.  | 
 | 75 | +    # Only the middle row in case of an odd array dimension could cause trouble, but this is prevented by  | 
 | 76 | +    # ignoring the threads that cross the mid-point  | 
 | 77 | + | 
 | 78 | +    nthreads = 256  | 
 | 79 | + | 
 | 80 | +    kernel(get_backend(data), nthreads)(data; ndrange=length(data))  | 
 | 81 | +end  | 
 | 82 | + | 
 | 83 | + | 
 | 84 | +# n-dimensional API  | 
 | 85 | + | 
 | 86 | +function Base.reverse!(data::AnyGPUArray{T, N}; dims=:) where {T, N}  | 
 | 87 | +    if isa(dims, Colon)  | 
 | 88 | +        dims = 1:ndims(data)  | 
 | 89 | +    end  | 
 | 90 | +    if !applicable(iterate, dims)  | 
 | 91 | +        throw(ArgumentError("dimension $dims is not an iterable"))  | 
 | 92 | +    end  | 
 | 93 | +    if !all(1 .≤ dims .≤ ndims(data))  | 
 | 94 | +        throw(ArgumentError("dimension $dims is not 1 ≤ $dims ≤ $(ndims(data))"))  | 
 | 95 | +    end  | 
 | 96 | + | 
 | 97 | +    _reverse!(data; dims=dims)  | 
 | 98 | + | 
 | 99 | +    return data  | 
 | 100 | +end  | 
 | 101 | + | 
 | 102 | +# out-of-place  | 
 | 103 | +function Base.reverse(input::AnyGPUArray{T, N}; dims=:) where {T, N}  | 
 | 104 | +    if isa(dims, Colon)  | 
 | 105 | +        dims = 1:ndims(input)  | 
 | 106 | +    end  | 
 | 107 | +    if !applicable(iterate, dims)  | 
 | 108 | +        throw(ArgumentError("dimension $dims is not an iterable"))  | 
 | 109 | +    end  | 
 | 110 | +    if !all(1 .≤ dims .≤ ndims(input))  | 
 | 111 | +        throw(ArgumentError("dimension $dims is not 1 ≤ $dims ≤ $(ndims(input))"))  | 
 | 112 | +    end  | 
 | 113 | + | 
 | 114 | +    if all(size(input)[[dims...]].==1)  | 
 | 115 | +        # no reverse operation needed at all in this case.  | 
 | 116 | +        return copy(input)  | 
 | 117 | +    else  | 
 | 118 | +        output = similar(input)  | 
 | 119 | +        _reverse(input, output; dims=dims)  | 
 | 120 | +        return output  | 
 | 121 | +    end  | 
 | 122 | +end  | 
 | 123 | + | 
 | 124 | + | 
 | 125 | +# 1-dimensional API  | 
 | 126 | + | 
 | 127 | +# in-place  | 
 | 128 | +Base.@propagate_inbounds function Base.reverse!(data::AnyGPUVector{T}, start::Integer,  | 
 | 129 | +                                                stop::Integer=length(data)) where {T}  | 
 | 130 | +    _reverse!(view(data, start:stop))  | 
 | 131 | +    return data  | 
 | 132 | +end  | 
 | 133 | + | 
 | 134 | +Base.reverse!(data::AnyGPUVector{T}) where {T} = @inbounds reverse!(data, 1, length(data))  | 
 | 135 | + | 
 | 136 | +# out-of-place  | 
 | 137 | +Base.@propagate_inbounds function Base.reverse(input::AnyGPUVector{T}, start::Integer,  | 
 | 138 | +                                               stop::Integer=length(input)) where {T}  | 
 | 139 | +    output = similar(input)  | 
 | 140 | + | 
 | 141 | +    start > 1 && copyto!(output, 1, input, 1, start-1)  | 
 | 142 | +    _reverse(view(input, start:stop), view(output, start:stop))  | 
 | 143 | +    stop < length(input) && copyto!(output, stop+1, input, stop+1)  | 
 | 144 | + | 
 | 145 | +    return output  | 
 | 146 | +end  | 
 | 147 | + | 
 | 148 | +Base.reverse(data::AnyGPUVector{T}) where {T} = @inbounds reverse(data, 1, length(data))  | 
0 commit comments