|
| 1 | +# Compute rigid and similarity transformations between point sets |
| 2 | + |
| 3 | +# For rigid transformations, we use: |
| 4 | +# Kabsch, Wolfgang. "A discussion of the solution for the best rotation to |
| 5 | +# relate two sets of vectors." Acta Crystallographica Section A: Crystal |
| 6 | +# Physics, Diffraction, Theoretical and General Crystallography 34.5 (1978): |
| 7 | +# 827-828. |
| 8 | +# This has been generalized to support weighted points: |
| 9 | +# https://igl.ethz.ch/projects/ARAP/svd_rot.pdf |
| 10 | +# We add the component for similarity transformations from: |
| 11 | +# Umeyama, Shinji. "Least-squares estimation of transformation parameters |
| 12 | +# between two point patterns." IEEE Transactions on Pattern Analysis & Machine |
| 13 | +# Intelligence 13.04 (1991): 376-380. |
| 14 | + |
| 15 | +# See also |
| 16 | +# https://en.wikipedia.org/wiki/Kabsch_algorithm |
| 17 | + |
| 18 | + |
| 19 | +# All matrices are DxN, where N is the number of positions and D is the dimensionality |
| 20 | + |
| 21 | +# Here, P is the probe (to be rotated) and Q is the refereence |
| 22 | + |
| 23 | +# `kabsch_centered` assumes P and Q are already centered at the origin |
| 24 | +# returns the rotation (optionally with scaling) for alignment |
| 25 | +function kabsch_centered(P, Q, w; scale::Bool=false, svd::F = LinearAlgebra.svd) where F |
| 26 | + @assert size(P) == size(Q) |
| 27 | + W = Diagonal(w/sum(w)) |
| 28 | + H = P*W*Q' |
| 29 | + U,Σ,V = svd(H) |
| 30 | + Ddiag = ones(eltype(H), size(H,1)) |
| 31 | + Ddiag[end] = sign(det(V*U')) |
| 32 | + c = scale ? sum(Σ .* Ddiag) / sum(P .* (P*W)) : 1 |
| 33 | + return LinearMap(V * Diagonal(c * Ddiag) * U') |
| 34 | +end |
| 35 | + |
| 36 | +""" |
| 37 | + kabsch(from_points => to_points, w=ones(npoints); scale::Bool=false, svd=LinearAlgebra.svd) → trans |
| 38 | +
|
| 39 | +Compute the rigid transformation (or similarity transformation, if `scale=true`) |
| 40 | +that aligns `from_points` to `to_points` in a least-squares sense. |
| 41 | +
|
| 42 | +Optionally specify the non-negative weights `w` for each point. The default value of the weight |
| 43 | +is 1 for each point. |
| 44 | +
|
| 45 | +For |
| 46 | +differentiability, use `svd = GenericLinearAlgebra.svd` or other differentiable |
| 47 | +singular value decomposition. |
| 48 | +""" |
| 49 | +function kabsch(pr::Pair{<:AbstractMatrix, <:AbstractMatrix}, w::AbstractVector=ones(size(pr.first,2)); scale::Bool=false, kwargs...) |
| 50 | + P, Q = pr |
| 51 | + any(<(0), w) && throw(ArgumentError("weights must be non-negative")) |
| 52 | + all(iszero, w) && throw(ArgumentError("weights must not all be zero")) |
| 53 | + wn = w/sum(w) |
| 54 | + centerP, centerQ = P*wn, Q*wn |
| 55 | + R = kabsch_centered(P .- centerP, Q .- centerQ, w; scale, kwargs...) |
| 56 | + return inv(Translation(-centerQ)) ∘ R ∘ Translation(-centerP) |
| 57 | +end |
| 58 | +kabsch((from_points, to_points)::Pair, args...; kwargs...) = kabsch(column_matrix(from_points) => column_matrix(to_points), args...; kwargs...) |
0 commit comments