Skip to content

Commit 148839b

Browse files
authored
Construct similarity transformations from point-pairs (#97)
Given two sets of points, this constructs rigid (rotation + translation) and similarity (rotation, translation, and scaling) transformations that align the first set to the second in the least-squares sense. Similar to #87, but with constraints on the nature of the transformation. Co-authored by: Tom McGrath <[email protected]>
1 parent 1ed7816 commit 148839b

File tree

6 files changed

+121
-2
lines changed

6 files changed

+121
-2
lines changed

README.md

+9-1
Original file line numberDiff line numberDiff line change
@@ -178,11 +178,19 @@ julia> from_points = [[0, 0], [1, 0], [0, 1]];
178178
julia> to_points = [[1, 1], [3, 1], [1.5, 3]];
179179

180180
julia> AffineMap(from_points => to_points)
181-
AffineMap([1.9999999999999996 0.4999999999999999; -5.551115123125783e-16 2.0], [0.9999999999999999, 1.0000000000000002])
181+
AffineMap([2.0 0.5; 0.0 2.0], [1.0, 1.0])
182182
```
183183

184184
The points can be supplied as a collection of vectors or as a matrix with points as columns.
185185

186+
If you want to restrict the transformation to be rigid (rotation + translation)
187+
or similar (rotation, translation, and scaling), use `kabsch` instead:
188+
189+
```julia
190+
julia> rigid = kabsch(from_points => to_points)
191+
AffineMap([0.9912279006826346 0.132163720091018; -0.1321637200910178 0.9912279006826348], [1.4588694597421157, 1.380311939802794])
192+
```
193+
186194
#### Perspective transformations
187195

188196
The perspective transformation maps real-space coordinates to those on a virtual

docs/src/api.md

+1
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,7 @@ AffineMap(::Transformation, ::Any)
2222
AffineMap(::Pair)
2323
LinearMap
2424
Translation
25+
kabsch
2526
```
2627

2728
## 2D Coordinates

docs/src/index.md

+10-1
Original file line numberDiff line numberDiff line change
@@ -179,7 +179,7 @@ and a translation, e.g. `Translation(v) ∘ LinearMap(v)` (or any combination of
179179

180180
`AffineMap`s can be constructed to fit point pairs `from_points => to_points`:
181181

182-
```jldoctest; filter=[r"(2\.0|1\.9999\d+)" => "2.0", r"(0\.5|0\.49999\d+)" => "0.5", r"(0\.0|[ -]\d\.\d+e-\d\d)" => "0.0", r"(1\.0(?!0)|1\.0000\d+|0\.9999\d+)" => "1.0"]
182+
```jldoctest lsq; filter=[r"(2\.0|1\.9999\d+)" => "2.0", r"(0\.5|0\.49999\d+)" => "0.5", r"(0\.0|[ -]\d\.\d+e-\d\d)" => "0.0", r"(1\.0(?!0)|1\.0000\d+|0\.9999\d+)" => "1.0"]
183183
julia> from_points = [[0, 0], [1, 0], [0, 1]];
184184
185185
julia> to_points = [[1, 1], [3, 1], [1.5, 3]];
@@ -190,6 +190,15 @@ AffineMap([2.0 0.5; 0.0 2.0], [1.0, 1.0])
190190

191191
(You may get slightly different numerical values due to roundoff errors.) The points can be supplied as a collection of vectors or as a matrix with points as columns.
192192

193+
If you want to restrict the transformation to be rigid (rotation + translation)
194+
or similar (rotation, translation, and scaling), use `kabsch` instead:
195+
196+
```jldoctest lsq; filter=[r"0\.9912\d+" => "0.9912", r"0\.1321\d+" => "0.1321", r"1\.4588\d+" => "1.4588", r"1\.3803\d+" => "1.3803"]
197+
julia> rigid = kabsch(from_points => to_points)
198+
AffineMap([0.9912279006826346 0.132163720091018; -0.1321637200910178 0.9912279006826348], [1.4588694597421157, 1.380311939802794])
199+
```
200+
201+
193202
### Perspective transformations
194203

195204
The perspective transformation maps real-space coordinates to those on a virtual

src/CoordinateTransformations.jl

+2
Original file line numberDiff line numberDiff line change
@@ -21,10 +21,12 @@ export SphericalFromCartesian, CartesianFromSpherical,
2121
export AbstractAffineMap
2222
export AffineMap, LinearMap, Translation
2323
export PerspectiveMap, cameramap
24+
export kabsch
2425

2526
include("core.jl")
2627
include("coordinatesystems.jl")
2728
include("affine.jl")
2829
include("perspective.jl")
30+
include("kabsch.jl")
2931

3032
end # module

src/kabsch.jl

+58
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,58 @@
1+
# Compute rigid and similarity transformations between point sets
2+
3+
# For rigid transformations, we use:
4+
# Kabsch, Wolfgang. "A discussion of the solution for the best rotation to
5+
# relate two sets of vectors." Acta Crystallographica Section A: Crystal
6+
# Physics, Diffraction, Theoretical and General Crystallography 34.5 (1978):
7+
# 827-828.
8+
# This has been generalized to support weighted points:
9+
# https://igl.ethz.ch/projects/ARAP/svd_rot.pdf
10+
# We add the component for similarity transformations from:
11+
# Umeyama, Shinji. "Least-squares estimation of transformation parameters
12+
# between two point patterns." IEEE Transactions on Pattern Analysis & Machine
13+
# Intelligence 13.04 (1991): 376-380.
14+
15+
# See also
16+
# https://en.wikipedia.org/wiki/Kabsch_algorithm
17+
18+
19+
# All matrices are DxN, where N is the number of positions and D is the dimensionality
20+
21+
# Here, P is the probe (to be rotated) and Q is the refereence
22+
23+
# `kabsch_centered` assumes P and Q are already centered at the origin
24+
# returns the rotation (optionally with scaling) for alignment
25+
function kabsch_centered(P, Q, w; scale::Bool=false, svd::F = LinearAlgebra.svd) where F
26+
@assert size(P) == size(Q)
27+
W = Diagonal(w/sum(w))
28+
H = P*W*Q'
29+
U,Σ,V = svd(H)
30+
Ddiag = ones(eltype(H), size(H,1))
31+
Ddiag[end] = sign(det(V*U'))
32+
c = scale ? sum.* Ddiag) / sum(P .* (P*W)) : 1
33+
return LinearMap(V * Diagonal(c * Ddiag) * U')
34+
end
35+
36+
"""
37+
kabsch(from_points => to_points, w=ones(npoints); scale::Bool=false, svd=LinearAlgebra.svd) → trans
38+
39+
Compute the rigid transformation (or similarity transformation, if `scale=true`)
40+
that aligns `from_points` to `to_points` in a least-squares sense.
41+
42+
Optionally specify the non-negative weights `w` for each point. The default value of the weight
43+
is 1 for each point.
44+
45+
For
46+
differentiability, use `svd = GenericLinearAlgebra.svd` or other differentiable
47+
singular value decomposition.
48+
"""
49+
function kabsch(pr::Pair{<:AbstractMatrix, <:AbstractMatrix}, w::AbstractVector=ones(size(pr.first,2)); scale::Bool=false, kwargs...)
50+
P, Q = pr
51+
any(<(0), w) && throw(ArgumentError("weights must be non-negative"))
52+
all(iszero, w) && throw(ArgumentError("weights must not all be zero"))
53+
wn = w/sum(w)
54+
centerP, centerQ = P*wn, Q*wn
55+
R = kabsch_centered(P .- centerP, Q .- centerQ, w; scale, kwargs...)
56+
return inv(Translation(-centerQ)) R Translation(-centerP)
57+
end
58+
kabsch((from_points, to_points)::Pair, args...; kwargs...) = kabsch(column_matrix(from_points) => column_matrix(to_points), args...; kwargs...)

test/affine.jl

+41
Original file line numberDiff line numberDiff line change
@@ -144,5 +144,46 @@ end
144144
to_points = map(A, from_points)
145145
A2 = AffineMap(from_points => to_points)
146146
@test A2 A
147+
148+
## Rigid transformations
149+
θ = π / 7
150+
R = [cos(θ) -sin(θ); sin(θ) cos(θ)]
151+
v = [0.87, 0.15]
152+
A = AffineMap(R, v)
153+
from_points = [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]]
154+
to_points = map(A, from_points)
155+
A2 = @inferred(kabsch(from_points => to_points))
156+
@test A2 A
157+
# with weights
158+
A2 = kabsch(from_points => to_points, [0.2, 0.7, 0.9, 0.3])
159+
@test A2 A
160+
A2 = kabsch(reduce(hcat, from_points) => reduce(hcat, to_points))
161+
@test A2 A
162+
from_points = ([0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0])
163+
to_points = map(A, from_points)
164+
A2 = kabsch(from_points => to_points)
165+
@test A2 A
166+
# with user-specified SVD
167+
A2 = @inferred(kabsch(from_points => to_points; svd=LinearAlgebra.svd))
168+
@test A2 A
169+
# when a rigid transformation is not possible
170+
A2 = kabsch(from_points => 1.1 .* from_points)
171+
@test A2.linear' * A2.linear I
172+
173+
@test_throws "weights must be non-negative" kabsch(from_points => to_points, [0.2, -0.7, 0.9, 0.3])
174+
@test_throws "weights must not all be zero" kabsch(from_points => to_points, [0.0, 0.0, 0.0, 0.0])
175+
176+
# Similarity transformations
177+
θ = π / 7
178+
R = [cos(θ) -sin(θ); sin(θ) cos(θ)]
179+
v = [0.87, 0.15]
180+
c = 1.15
181+
A = AffineMap(c * R, v)
182+
from_points = [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]]
183+
to_points = map(A, from_points)
184+
A2 = @inferred(kabsch(from_points => to_points; scale=true))
185+
@test A2 A
186+
A2 = @inferred(kabsch(from_points => to_points, [0.2, 0.7, 0.9, 0.3]; scale=true))
187+
@test A2 A
147188
end
148189
end

0 commit comments

Comments
 (0)