Skip to content

Poor scaling of matrix multiplication for UpperTriangular(AlmostBandedMatrix) #50

@DanielVandH

Description

@DanielVandH

Encountered this case where the performance of multiplication seemed to have really poor scaling:

using FillArrays, SemiseparableMatrices, BandedMatrices, LazyArrays
function gen_example(n)
    A = BandedMatrix(0 => [1; 1:n-1], 1 => Fill(-1.0, n - 1))
    B = ApplyMatrix(*, ones(n), OneElement(1.0, (1, n), (1, n)))
    AB = AlmostBandedMatrix(A, B)
    U = UpperTriangular(AB)
    L = LowerTriangular(brand(n, n, 2, 0))
    stats = @timed U * L
    return stats.time, stats.bytes
end
n = 2 .^ (0:11)
time_byts = gen_example.(n)
12-element Vector{Tuple{Float64, Int64}}:
 (2.7e-6, 64)
 (3.0e-7, 96)
 (1.4e-6, 704)
 (2.7e-6, 3648)
 (1.44e-5, 16512)
 (9.14e-5, 69760)
 (0.0005424, 286768)
 (0.0045723, 1163312)
 (0.0310835, 4685872)
 (0.240178, 18808880)
 (1.9579295, 75366448)
 (41.1409489, 301727792)

If I replace the stats = ... line with literally stats = @timed Matrix(U) * Matrix(L) so that all the structure is lost,

12-element Vector{Tuple{Float64, Int64}}:
 (0.0068448, 192)
 (0.0004204, 288)
 (6.15e-5, 704)
 (1.53e-5, 2112)
 (1.39e-5, 7424)
 (0.0007202, 26880)
 (0.0003808, 102416)
 (0.0053296, 401424)
 (0.0047358, 1589264)
 (0.0082311, 6324240)
 (0.0461804, 25231376)
 (2.2484057, 100794384)

If I instead keep stats = @timed U * L but do AB = Matrix(A + B) then

12-element Vector{Tuple{Float64, Int64}}:
 (0.0019402, 64)
 (3.8e-6, 96)
 (1.0e-6, 192)
 (1.7e-6, 576)
 (3.5e-6, 2176)
 (0.0004226, 8320)
 (0.000128, 32816)
 (0.0002281, 131120)
 (0.0006641, 524336)
 (0.0032373, 2097200)
 (0.0220077, 8388656)
 (0.1559884, 33554480)

If I do AB = A + B, the timing is instant since the multiplication is left lazy.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions