Skip to content

Commit 4f7c566

Browse files
authored
V2.0.0 (#310)
* move symbol into type * change what iteration means for a polynomial * adjust integrate to return polynomial of same type, even if NaN * clean up offset vector tests * drop OffsetArrays dependency; clean up scalar operations for ImmutablePolynomial * change some errors into ArgumentError * replace isnothing; standardize check for same variable * registerN remove, previously deprecated * update documentation, add example to `extending.md` * clean up integration, base on `integrate(p)`, not `integrate(p,c)` * work on promotion for + and * operations; move computations into `common` for different storage types * laurent polynomial depwarns removed * fix basis symbol handling * adjust evaluation so that implemented evalpoly instead of call syntax is expected. * add example to extending; specialize evalpoly rather than call syntax * refactor truncate! chop! move computations based on storage type into `common.jl` * move things into common (zero, one,variable, basis) * fix LaurentPolynomial evaluation to use faster `evalpoly` * regularize treatment of indeterminate in zero,one,variable,basis
1 parent b4dfe82 commit 4f7c566

23 files changed

+1311
-920
lines changed

Project.toml

+4-4
Original file line numberDiff line numberDiff line change
@@ -2,25 +2,25 @@ name = "Polynomials"
22
uuid = "f27b6e38-b328-58d1-80ce-0feddd5e7a45"
33
license = "MIT"
44
author = "JuliaMath"
5-
version = "1.2.0"
5+
version = "2.0.0"
66

77
[deps]
88
Intervals = "d8418881-c3e1-53bb-8760-2df7ec849ed5"
99
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
10-
OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
1110
RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
1211

12+
1313
[compat]
1414
Intervals = "0.5, 1.0, 1.3"
15-
OffsetArrays = "1"
1615
RecipesBase = "0.7, 0.8, 1"
1716
julia = "1"
1817

1918
[extras]
2019
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
20+
OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
2121
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
2222
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
2323
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
2424

2525
[targets]
26-
test = ["LinearAlgebra", "SparseArrays", "SpecialFunctions", "Test"]
26+
test = ["LinearAlgebra", "SparseArrays", "OffsetArrays", "SpecialFunctions", "Test"]

README.md

+3-1
Original file line numberDiff line numberDiff line change
@@ -208,7 +208,9 @@ Polynomial objects also have other methods:
208208

209209
* [PolynomialRings](https://github.com/tkluck/PolynomialRings.jl) A library for arithmetic and algebra with multi-variable polynomials.
210210

211-
* [AbstractAlgebra.jl](https://github.com/wbhart/AbstractAlgebra.jl) and [Nemo.jl](https://github.com/wbhart/Nemo.jl) for generic polynomial rings, matrix spaces, fraction fields, residue rings, power series
211+
* [AbstractAlgebra.jl](https://github.com/wbhart/AbstractAlgebra.jl), [Nemo.jl](https://github.com/wbhart/Nemo.jl) for generic polynomial rings, matrix spaces, fraction fields, residue rings, power series, [Hecke.jl](https://github.com/thofma/Hecke.jl) for algebraic number theory.
212+
213+
* [CommutativeAlgebra](https://github.com/KlausC/CommutativeRings.jl) the start of a computer algebra system specialized to discrete calculations with support for polynomials.
212214

213215
* [PolynomialRoots.jl](https://github.com/giordano/PolynomialRoots.jl) for a fast complex polynomial root finder. For larger degree problems, also [FastPolynomialRoots](https://github.com/andreasnoack/FastPolynomialRoots.jl) and [AMRVW](https://github.com/jverzani/AMRVW.jl).
214216

docs/src/extending.md

+119-4
Original file line numberDiff line numberDiff line change
@@ -21,14 +21,129 @@ As always, if the default implementation does not work or there are more efficie
2121
| Constructor | x | |
2222
| Type function (`(::P)(x)`) | x | |
2323
| `convert(::Polynomial, ...)` | | Not required, but the library is built off the [`Polynomial`](@ref) type, so all operations are guaranteed to work with it. Also consider writing the inverse conversion method. |
24+
| `Polynomials.evalpoly(x, p::P)` | to evaluate the polynomial at `x` (`Base.evalpoly` okay post `v"1.4.0"`) |
2425
| `domain` | x | Should return an [`AbstractInterval`](https://invenia.github.io/Intervals.jl/stable/#Intervals-1) |
2526
| `vander` | | Required for [`fit`](@ref) |
2627
| `companion` | | Required for [`roots`](@ref) |
27-
| `fromroots` | | By default, will form polynomials using `prod(variable(::P) - r)` for reach root `r`|
28-
| `+(::P, ::P)` | | Addition of polynomials |
29-
| `-(::P, ::P)` | | Subtraction of polynomials |
3028
| `*(::P, ::P)` | | Multiplication of polynomials |
3129
| `divrem` | | Required for [`gcd`](@ref)|
30+
| `one`| | Convenience to find constant in new basis |
3231
| `variable`| | Convenience to find monomial `x` in new basis|
3332

34-
Check out both the [`Polynomial`](@ref) and [`ChebyshevT`](@ref) for examples of this interface being extended.
33+
Check out both the [`Polynomial`](@ref) and [`ChebyshevT`](@ref) for examples of this interface being extended.
34+
35+
## Example
36+
37+
The following shows a minimal example where the polynomial aliases the vector defining the coefficients.
38+
The constructor ensures that there are no trailing zeros. The `@register` call ensures a common interface. This example subtypes `StandardBasisPolynomial`, not `AbstractPolynomial`, and consequently inherits the methods above that otherwise would have been required. For other bases, more methods may be necessary to define (again, refer to [`ChebyshevT`](@ref) for an example).
39+
40+
```jldoctest AliasPolynomial
41+
julia> using Polynomials
42+
43+
julia> struct AliasPolynomial{T <: Number, X} <: Polynomials.StandardBasisPolynomial{T, X}
44+
coeffs::Vector{T}
45+
function AliasPolynomial{T, X}(coeffs::Vector{S}) where {T, X, S}
46+
p = new{T,X}(coeffs)
47+
chop!(p)
48+
end
49+
end
50+
51+
julia> Polynomials.@register AliasPolynomial
52+
```
53+
54+
To see this new polynomial type in action, we have:
55+
56+
```jldoctest AliasPolynomial
57+
julia> xs = [1,2,3,4];
58+
59+
julia> p = AliasPolynomial(xs)
60+
AliasPolynomial(1 + 2*x + 3*x^2 + 4*x^3)
61+
62+
julia> q = AliasPolynomial(1.0, :y)
63+
AliasPolynomial(1.0)
64+
65+
julia> p + q
66+
AliasPolynomial(2.0 + 2.0*x + 3.0*x^2 + 4.0*x^3)
67+
68+
julia> p * p
69+
AliasPolynomial(1 + 4*x + 10*x^2 + 20*x^3 + 25*x^4 + 24*x^5 + 16*x^6)
70+
71+
julia> (derivative ∘ integrate)(p) == p
72+
true
73+
74+
julia> p(3)
75+
142
76+
```
77+
78+
For the `Polynomial` type, the default on operations is to copy the array. For this type, it might seem reasonable -- to avoid allocations -- to update the coefficients in place for scalar addition and scalar multiplication.
79+
80+
Scalar addition, `p+c`, defaults to `p + c*one(p)`, or polynomial addition, which is not inplace without addition work. As such, we create a new method and an infix operator
81+
82+
```jldoctest AliasPolynomial
83+
julia> function scalar_add!(p::AliasPolynomial{T}, c::T) where {T}
84+
p.coeffs[1] += c
85+
p
86+
end;
87+
88+
julia> p::AliasPolynomial ⊕ c::Number = scalar_add!(p,c);
89+
90+
```
91+
92+
Then we have:
93+
94+
```jldoctest AliasPolynomial
95+
julia> p
96+
AliasPolynomial(1 + 2*x + 3*x^2 + 4*x^3)
97+
98+
julia> p ⊕ 2
99+
AliasPolynomial(3 + 2*x + 3*x^2 + 4*x^3)
100+
101+
julia> p
102+
AliasPolynomial(3 + 2*x + 3*x^2 + 4*x^3)
103+
```
104+
105+
The viewpoint that a polynomial represents a vector of coefficients leads to an expectation that vector operations should match when possible. Scalar multiplication is a vector operation, so it seems reasonable to override the broadcast machinery to implement an in place operation (e.g. `p .*= 2`). By default, the polynomial types are not broadcastable over their coefficients. We would need to make a change there and modify the `copyto!` function:
106+
107+
108+
```jldoctest AliasPolynomial
109+
julia> Base.broadcastable(p::AliasPolynomial) = p.coeffs;
110+
111+
112+
julia> Base.ndims(::Type{<:AliasPolynomial}) = 1
113+
114+
115+
julia> Base.copyto!(p::AliasPolynomial, x) = (copyto!(p.coeffs, x); chop!(p));
116+
117+
```
118+
119+
The last `chop!` call would ensure that there are no trailing zeros in the coefficient vector after multiplication, as multiplication by `0` is possible.
120+
121+
Then we might have:
122+
123+
```jldoctest AliasPolynomial
124+
julia> p
125+
AliasPolynomial(3 + 2*x + 3*x^2 + 4*x^3)
126+
127+
julia> p .*= 2
128+
AliasPolynomial(6 + 4*x + 6*x^2 + 8*x^3)
129+
130+
julia> p
131+
AliasPolynomial(6 + 4*x + 6*x^2 + 8*x^3)
132+
133+
julia> p ./= 2
134+
AliasPolynomial(3 + 2*x + 3*x^2 + 4*x^3)
135+
```
136+
137+
Trying to divide again would throw an error, as the result would not fit with the integer type of `p`.
138+
139+
Now `p` is treated as the vector `p.coeffs`, as regards broadcasting, so some things may be surprising, for example this expression returns a vector, not a polynomial:
140+
141+
```jldoctest AliasPolynomial
142+
julia> p .+ 2
143+
4-element Array{Int64,1}:
144+
5
145+
4
146+
5
147+
6
148+
```
149+

docs/src/index.md

+61-5
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ julia> q = Polynomial([1, 2, 3], :s)
9797
Polynomial(1 + 2*s + 3*s^2)
9898
9999
julia> p + q
100-
ERROR: Polynomials must have same variable
100+
ERROR: ArgumentError: Polynomials have different indeterminates
101101
[...]
102102
```
103103

@@ -199,7 +199,7 @@ julia> derivative(p1)
199199
ChebyshevT(2.0⋅T_0(x) + 12.0⋅T_1(x))
200200
201201
julia> integrate(p2)
202-
ChebyshevT(0.25⋅T_0(x) - 1.0⋅T_1(x) + 0.25⋅T_2(x) + 0.3333333333333333⋅T_3(x))
202+
ChebyshevT(- 1.0⋅T_1(x) + 0.25⋅T_2(x) + 0.3333333333333333⋅T_3(x))
203203
204204
julia> convert(Polynomial, p1)
205205
Polynomial(-2.0 + 2.0*x + 6.0*x^2)
@@ -213,15 +213,68 @@ ChebyshevT(2.5⋅T_0(x) + 2.0⋅T_1(x) + 1.5⋅T_2(x))
213213

214214
### Iteration
215215

216-
If its basis is implicit, then a polynomial may be seen as just a vector of coefficients. Vectors or 1-based, but, for convenience, polynomial types are 0-based, for purposes of indexing (e.g. `getindex`, `setindex!`, `eachindex`). Iteration over a polynomial steps through the basis vectors, e.g. `a_0`, `a_1*x`, ...
216+
If its basis is implicit, then a polynomial may be seen as just a vector of coefficients. Vectors or 1-based, but, for convenience, polynomial types are 0-based, for purposes of indexing (e.g. `getindex`, `setindex!`, `eachindex`). Iteration over a polynomial steps through the underlying coefficients.
217217

218218
```jldoctest
219219
julia> as = [1,2,3,4,5]; p = Polynomial(as);
220220
221221
julia> as[3], p[2], collect(p)[3]
222-
(3, 3, Polynomial(3*x^2))
222+
(3, 3, 3)
223223
```
224224

225+
226+
The `pairs` iterator, iterates over the indices and coefficients, attempting to match how `pairs` applies to the underlying storage model:
227+
228+
```jldoctest
229+
julia> v = [1,2,0,4]
230+
4-element Array{Int64,1}:
231+
1
232+
2
233+
0
234+
4
235+
236+
julia> p,ip,sp,lp = Polynomial(v), ImmutablePolynomial(v), SparsePolynomial(v), LaurentPolynomial(v, -1);
237+
238+
julia> collect(pairs(p))
239+
4-element Array{Pair{Int64,Int64},1}:
240+
0 => 1
241+
1 => 2
242+
2 => 0
243+
3 => 4
244+
245+
julia> collect(pairs(ip)) == collect(pairs(p))
246+
true
247+
248+
julia> collect(pairs(sp)) # unordered dictionary with only non-zero terms
249+
3-element Array{Pair{Int64,Int64},1}:
250+
0 => 1
251+
3 => 4
252+
1 => 2
253+
254+
julia> collect(pairs(lp))
255+
4-element Array{Pair{Int64,Int64},1}:
256+
-1 => 1
257+
0 => 2
258+
1 => 0
259+
2 => 4
260+
```
261+
262+
263+
The unexported `monomials` iterator iterates over the terms (`p[i]*Polynomials.basis(p,i)`) of the polynomial:
264+
265+
```jldoctest
266+
julia> p = Polynomial([1,2,0,4], :u)
267+
Polynomial(1 + 2*u + 4*u^3)
268+
269+
julia> collect(Polynomials.monomials(p))
270+
4-element Array{Any,1}:
271+
Polynomial(1)
272+
Polynomial(2*u)
273+
Polynomial(0)
274+
Polynomial(4*u^3)
275+
```
276+
277+
225278
## Related Packages
226279

227280
* [StaticUnivariatePolynomials.jl](https://github.com/tkoolen/StaticUnivariatePolynomials.jl) Fixed-size univariate polynomials backed by a Tuple
@@ -234,12 +287,15 @@ julia> as[3], p[2], collect(p)[3]
234287

235288
* [PolynomialRings](https://github.com/tkluck/PolynomialRings.jl) A library for arithmetic and algebra with multi-variable polynomials.
236289

237-
* [AbstractAlgebra.jl](https://github.com/wbhart/AbstractAlgebra.jl) and [Nemo.jl](https://github.com/wbhart/Nemo.jl) for generic polynomial rings, matrix spaces, fraction fields, residue rings, power series
290+
* [AbstractAlgebra.jl](https://github.com/wbhart/AbstractAlgebra.jl), [Nemo.jl](https://github.com/wbhart/Nemo.jl) for generic polynomial rings, matrix spaces, fraction fields, residue rings, power series, [Hecke.jl](https://github.com/thofma/Hecke.jl) for algebraic number theory.
291+
292+
* [CommutativeAlgebra](https://github.com/KlausC/CommutativeRings.jl) the start of a computer algebra system specialized to discrete calculations with support for polynomials.
238293

239294
* [PolynomialRoots.jl](https://github.com/giordano/PolynomialRoots.jl) for a fast complex polynomial root finder. For larger degree problems, also [FastPolynomialRoots](https://github.com/andreasnoack/FastPolynomialRoots.jl) and [AMRVW](https://github.com/jverzani/AMRVW.jl).
240295

241296

242297

298+
243299
## Contributing
244300

245301
If you are interested in this project, feel free to open an issue or pull request! In general, any changes must be thoroughly tested, allow deprecation, and not deviate too far from the common interface. All PR's must have an updated project version, as well, to keep the continuous delivery cycle up-to-date.

docs/src/polynomials/chebyshev.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ ChebyshevT(1⋅T_0(x) + 3⋅T_2(x) + 4⋅T_3(x))
3131
3232
3333
julia> p = convert(Polynomial, c)
34-
Polynomial(-2 - 12*x + 6*x^2 + 16*x^3)
34+
Polynomial(-2.0 - 12.0*x + 6.0*x^2 + 16.0*x^3)
3535
3636
julia> convert(ChebyshevT, p)
3737
ChebyshevT(1.0⋅T_0(x) + 3.0⋅T_2(x) + 4.0⋅T_3(x))

src/Polynomials.jl

+4-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,10 @@ module Polynomials
33
# using GenericLinearAlgebra ## remove for now. cf: https://github.com/JuliaLinearAlgebra/GenericLinearAlgebra.jl/pull/71#issuecomment-743928205
44
using LinearAlgebra
55
using Intervals
6-
using OffsetArrays
6+
7+
if VERSION >= v"1.4.0"
8+
import Base: evalpoly
9+
end
710

811
include("abstract.jl")
912
include("show.jl")

0 commit comments

Comments
 (0)