Skip to content

Commit 9cd95fb

Browse files
authored
error with NaN; allow method to pass through (#594)
Address issues #592 and #593 * close #592 with an error message * add option for `multroot` method to calling `poles` function. This is a partial fix. The underlying algorithm is designed with Float64 in mind, and the example is using BigFloats. Might make more sense to have specific choices based on type of element, but that needs some thinking through.
1 parent 9b4af66 commit 9cd95fb

File tree

5 files changed

+27
-9
lines changed

5 files changed

+27
-9
lines changed

Project.toml

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@ name = "Polynomials"
22
uuid = "f27b6e38-b328-58d1-80ce-0feddd5e7a45"
33
license = "MIT"
44
author = "JuliaMath"
5-
version = "4.0.14"
5+
version = "4.0.15"
66

77
[deps]
88
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"

src/polynomials/multroot.jl

+2-4
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,6 @@ function pejorative_manifold(
145145
ϕ = 100, # residual growth factor
146146
kwargs...
147147
) where {T,X}
148-
149148
S = float(T)
150149
u = convert(PnPolynomial{S,X}, coeffs0(p))
151150
nu₂ = norm(u, 2)
@@ -156,9 +155,9 @@ function pejorative_manifold(
156155
atol = ρ2, rtol = zero(ρ2))
157156
ρⱼ /= nu₂
158157

158+
hasnan(v) && throw(ArgumentError("NaN in reduced polynomial"))
159159
# root approximations
160160
zs = roots(v)
161-
162161
# recover multiplicities
163162
ls = pejorative_manifold_multiplicities(Val(method),
164163
u, v, w,
@@ -206,7 +205,6 @@ function pejorative_manifold_multiplicities(
206205
end
207206

208207
end
209-
210208
ls
211209

212210
end
@@ -225,6 +223,7 @@ function pejorative_manifold_multiplicities(
225223

226224
dv = derivative(v)
227225
ls = w.(zs) ./ dv.(zs)
226+
228227
ls = round.(Int, real.(ls))
229228

230229
return ls
@@ -258,7 +257,6 @@ function pejorative_root(p, zs::Vector{S}, ls;
258257

259258
## Solve WJ Δz = W(Gl(z) - a)
260259
## using weights min(1/|aᵢ|), i ≠ 1
261-
262260
m,n = sum(ls), length(zs)
263261
# storage
264262
a = p[2:end]./p[1] # a ~ (p[n-1], p[n-2], ..., p[0])/p[n]

src/polynomials/ngcd.jl

-1
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,6 @@ function ngcd(p::P, q::Q,
4949
p′ = P′{R,X}(ps[nz:end])
5050
q′ = P′{R,X}(qs[nz:end])
5151
out = NGCD.ngcd(p′, q′, args...; kwargs...)
52-
5352
## convert to original polynomial type
5453
𝑷 = Polynomials.constructorof(P){R,X}
5554
u,v,w = convert.(𝑷, (out.u,out.v,out.w))

src/rational-functions/common.jl

+10-3
Original file line numberDiff line numberDiff line change
@@ -427,15 +427,22 @@ end
427427

428428
## ---- zeros, poles, ...
429429
"""
430-
poles(pq::AbstractRationalFunction; method=:numerical, kwargs...)
430+
poles(pq::AbstractRationalFunction;
431+
method=:numerical, multroot_method=:direct, kwargs...)
431432
432433
For a rational function `p/q`, first reduces to normal form, then finds the roots and multiplicities of the resulting denominator.
433434
435+
* `method` is used to pass to `lowest_terms`
436+
* `multroot_method` is passed to the method argument of `multroot`, which can be `:direct` (the faster default) or `:iterative` (the slower, and possibly more robust alternate)
437+
434438
"""
435-
function poles(pq::AbstractRationalFunction; method=:numerical, kwargs...)
439+
function poles(pq::AbstractRationalFunction;
440+
method=:numerical, # for lowest_terms
441+
multroot_method=:direct, # or :iterative
442+
kwargs...)
436443
pq′ = lowest_terms(pq; method=method, kwargs...)
437444
den = denominator(pq′)
438-
mr = Multroot.multroot(den)
445+
mr = Multroot.multroot(den; method=multroot_method)
439446
(zs=mr.values, multiplicities = mr.multiplicities)
440447
end
441448

test/StandardBasis.jl

+14
Original file line numberDiff line numberDiff line change
@@ -1027,6 +1027,20 @@ end
10271027
out = Polynomials.Multroot.multroot(Polynomials.Polynomial(pb))
10281028
@test out.values [1.0] && out.multiplicities == [2]
10291029

1030+
## Issue #592
1031+
p = Polynomial([NaN,NaN,NaN,NaN,NaN,NaN,NaN])
1032+
@test_throws ArgumentError roots(p//p)
1033+
1034+
## issue #593
1035+
numcoeffs = Complex{BigFloat}[-0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, -6.4095e+257 - 3.314e+243im, -5.6118e+244 - 3.9514e+230im, -4.0102e+236 - 2.0735e+222im, -3.0725e+223 - 2.1631e+209im, -1.0975e+215 - 5.6751e+200im, -7.2072e+201 - 5.0751e+187im, -1.7167e+193 - 8.877e+178im, -9.3936e+179 - 6.6134e+165im, -1.678e+171 - 8.6782e+156im, -7.3448e+157 - 5.1693e+143im, -1.0499e+149 - 5.43e+134im, -3.4468e+135 - 2.4259e+121im, -4.1052e+126 - 2.1231e+112im, -8.9846e+112 - 6.3225e+98im, -9.1725e+103 - 4.742e+89im, -1.0036e+90 - 7.0656e+75im, -8.9646e+80 - 4.6354e+66im]
1036+
dencoeffs = Complex{BigFloat}[0.0 + 0.0im, 0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, 0.0 + 0.0im, 0.0 + 0.0im, -3.0837e+258 + 0.0im, -3.5997e+245 - 9.309e+230im, -1.9292e+237 - 7.0217e+217im, -1.9709e+224 - 5.0951e+209im, -5.2803e+215 - 3.2932e+196im, -4.6214e+202 - 1.1952e+188im, -8.2587e+193 - 6.4383e+174im, -6.0237e+180 - 1.5577e+166im, -8.0763e+171 - 6.7125e+152im, -4.711e+158 - 1.2183e+144im, -5.0507e+149 - 3.937e+130im, -2.2106e+136 - 5.7173e+121im, -1.9752e+127 - 1.2316e+108im, -5.7628e+113 - 1.4904e+99im, -4.4151e+104 - 1.6057e+85im, -6.4393e+90 - 1.6651e+76im, -4.3167e+81 + 0.0im]
1037+
p = Polynomial(numcoeffs)
1038+
q = Polynomial(dencoeffs)
1039+
r = p//q
1040+
1041+
@test_throws ArgumentError poles(r)
1042+
out = poles(r; multroot_method=:iterative)
1043+
@test out.multiplicities == [3]
10301044
end
10311045

10321046
@testset "critical points" begin

0 commit comments

Comments
 (0)