-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvm.c
1141 lines (926 loc) · 26.7 KB
/
vm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#include "vm.h"
#include "exe.h"
// Support macros
#define REG(X) vm_read_reg(vm, X)
/*
* Allocate the memory for VM struct
* Returns false if allocation failed
* */
VMError vm_create(VM** vm) {
VM* vm_ptr = malloc(sizeof(VM));
uint8_t* memory = malloc(VM_MEMORYSIZE * sizeof(uint8_t));
uint64_t* regs = malloc(VM_REGCOUNT * sizeof(uint64_t));
if (vm_ptr == NULL || memory == NULL || regs == NULL) {
return vm_err_allocation;
}
vm_ptr->memory = memory;
vm_ptr->regs = regs;
vm_ptr->running = true;
vm_ptr->exit_code = 0;
*vm = vm_ptr;
return vm_err_regular_exit;
}
/*
* Clean the resources used by a vm struct
* */
void vm_clean(VM* vm) {
if (vm == NULL) return;
free(vm->memory);
free(vm->regs);
return;
}
/*
* Try to load a given executable into a virtual machine
* */
VMError vm_flash(VM* vm, Executable* exe) {
// Reset the machine
memset(vm->regs, 0, VM_REGCOUNT * sizeof(uint64_t));
memset(vm->memory, 0, VM_MEMORYSIZE);
vm->running = true;
vm->exit_code = 0;
// Initialize special purpose registers
vm_write_reg(vm, VM_REGSP, VM_STACK_START);
vm_write_reg(vm, VM_REGFP, VM_MEMORYSIZE);
vm_write_reg(vm, VM_REGIP, exe->header->entry_addr);
// If the executables load table is empty
// we assume that there is an entry which loads
// the entire data segment onto address 0x00
if (exe->header->load_table_size == 0) {
if (!vm_legal_address(exe->data_size)) {
return vm_err_executable_too_big;
}
memmove(vm->memory, exe->data, exe->data_size);
return vm_err_regular_exit;
}
// Iterate over the load table and copy each segment
// into it's specified location
for (int i = 0; i < exe->header->load_table_size; i++) {
LoadEntry entry = exe->header->load_table[i];
// Check overflow in executable
if (entry.offset + entry.size > exe->data_size) {
return vm_err_invalid_executable;
}
// Check overflow for machine memory
if (!vm_legal_address(entry.load + entry.size)) {
return vm_err_invalid_executable;
}
// Copy the relevant bytes into the machines memory
memmove(vm->memory + entry.load, exe->data + entry.offset, entry.size);
}
return vm_err_regular_exit;
}
/*
* The main loop of the virtual machine
*
* Returns the return code of the machine and sets the
* *exit_code* pointer to the user-defined exit code
* */
int vm_run(VM* vm, int* exit_code) {
// Loop until not running anymore
while (vm->running) {
vm_cycle(vm);
}
*exit_code = REG(0 | VM_REGBYTE);
return vm->exit_code;
}
/*
* Perform a single cpu cycle in the vm
* Returns false if no cycle could be performed
* */
bool vm_cycle(VM* vm) {
uint32_t ip = REG(VM_REGIP);
// Check if ip is out-of-bounds
if (!vm_legal_address(ip)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return false;
}
opcode instruction = vm->memory[ip];
uint64_t instruction_length = vm_instruction_length(vm, instruction);
// Check if there is enough memory for the instruction
if (!vm_legal_address(ip + instruction_length)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return false;
}
vm_execute(vm, instruction, ip);
// If the instruction we just executed didn't change the instruction pointer
// we increment it to the next instruction
//
// Since our instruction format isn't of fixed length, we have to calculate
// the offset to the next instruction. For most instructions this is a simple
// table-lookup, only loadi and push require a custom calculation
if (ip == REG(VM_REGIP)) {
vm_write_reg(vm, VM_REGIP, ip + instruction_length);
}
return true;
}
/*
* Calculate the length of a given instruction at the current instruction pointer
* in the virtual machine
* */
uint64_t vm_instruction_length(VM* vm, opcode instruction) {
switch (instruction) {
case op_loadi: {
uint32_t ip = REG(VM_REGIP);
uint8_t reg = *(uint8_t *)(vm->memory + ip + 1);
// +- Opcode
// | +- Register code
// | | +- Immediate value
// | | |
// v v v
return 1 + 1 + vm_reg_size(reg);
}
case op_push: {
uint32_t ip = REG(VM_REGIP);
uint32_t size = *(uint32_t *)(vm->memory + ip + 1);
// +- Opcode
// | +- Size specifier
// | | +- Immediate value
// | | |
// v v v
return 1 + 4 + size;
}
default:
// Check if this is a valid instruction
// If not we just return 1 to jump over it
if (instruction >= op_num_types) {
return 1;
}
return opcode_length_lookup_table[instruction];
}
}
/*
* Return the size of a given register
* */
uint32_t vm_reg_size(uint8_t reg) {
switch (reg & VM_MODEMASK) {
case VM_REGBYTE:
return 1;
case VM_REGWORD:
return 2;
case VM_REGDWORD:
return 4;
case VM_REGQWORD:
return 8;
default:
return 0; // Can't happen
}
}
/*
* Writes a block of memory from the machine's own memory onto the stack
* Address and size argument index into the machine's memory
* */
void vm_stack_write(VM* vm, uint32_t address, uint32_t size) {
uint32_t sp = REG(VM_REGSP);
// Check for a stack underflow
if (sp < size || address + size - 1 >= VM_MEMORYSIZE) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
memmove(vm->memory + sp - size, vm->memory + address, size);
vm_write_reg(vm, VM_REGSP, sp - size);
}
/*
* Write an arbitrary block of memory onto the stack
* Address and size arguments index into global address space
* */
void vm_stack_write_block(VM* vm, void* block, size_t size) {
uint32_t sp = REG(VM_REGSP);
// Check for a stack underflow
if (sp < size || !vm_legal_address(sp + size - 1)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
memmove(vm->memory + sp - size, block, size);
vm_write_reg(vm, VM_REGSP, sp - size);
}
/*
* Pop some bytes off the stack and return a pointer
* to the bytes which were just popped off
* */
void* vm_stack_pop(VM* vm, uint32_t size) {
uint32_t sp = REG(VM_REGSP);
// Check for a stack underflow
if (sp >= VM_MEMORYSIZE || sp < size) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return 0;
}
vm_write_reg(vm, VM_REGSP, sp + size);
return vm->memory + sp;
}
/*
* Write a value into a register
* */
void vm_write_reg(VM* vm, uint8_t reg, uint64_t value) {
switch (vm_reg_size(reg)) {
case 1:
*((uint8_t *) (vm->regs + (reg & VM_CODEMASK))) = (uint8_t) value;
break;
case 2:
*((uint16_t *) (vm->regs + (reg & VM_CODEMASK))) = (uint16_t) value;
break;
case 4:
*((uint32_t *) (vm->regs + (reg & VM_CODEMASK))) = (uint32_t) value;
break;
case 8:
*((uint64_t *) (vm->regs + (reg & VM_CODEMASK))) = (uint64_t) value;
break;
default:
break; // can't happen
}
}
/*
* Moves a block of memory into a register
* */
void vm_move_mem_to_reg(VM* vm, uint8_t reg, uint32_t address, uint32_t size) {
if (VM_MEMORYSIZE - size < address) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
switch (size) {
case 1:
vm_write_reg(vm, reg, *(uint8_t *)(vm->memory + address));
break;
case 2:
vm_write_reg(vm, reg, *(uint16_t *)(vm->memory + address));
break;
case 4:
vm_write_reg(vm, reg, *(uint32_t *)(vm->memory + address));
break;
default:
vm_write_reg(vm, reg, *(uint64_t *)(vm->memory + address));
break;
}
}
/*
* Read the value of a register
* */
uint64_t vm_read_reg(VM* vm, uint8_t reg) {
switch (vm_reg_size(reg)) {
case 1:
return *(uint64_t *)(uint8_t *) (vm->regs + (reg & VM_CODEMASK));
case 2:
return *(uint64_t *)(uint16_t *) (vm->regs + (reg & VM_CODEMASK));
case 4:
return *(uint64_t *)(uint32_t *) (vm->regs + (reg & VM_CODEMASK));
case 8:
return vm->regs[reg & VM_CODEMASK];
default:
return 0; // can't happen
}
}
/*
* Pushes a stack frame onto the stack and updates the required
* special purpose registers
* */
void vm_push_stack_frame(VM* vm, uint32_t return_address) {
uint32_t fp = REG(VM_REGFP);
uint32_t stack_frame_baseadr = REG(VM_REGSP) - 8;
vm_stack_write_block(vm, &return_address, 4);
vm_stack_write_block(vm, &fp, 4);
vm_write_reg(vm, VM_REGFP, stack_frame_baseadr);
}
/*
* Returns true if address is legal
* */
bool vm_legal_address(uint32_t address) {
return address < VM_MEMORYSIZE;
}
/*
* Return true if the zero bit of the flags register is set
* */
bool vm_is_zero_bit_set(VM* vm) {
return (REG(VM_REGFLAGS) & VM_FLAG_ZERO) == 1;
}
/*
* Set the zero bit of the vm to a specific value
* */
void vm_set_zero_bit(VM* vm, bool value) {
uint64_t flags = REG(VM_REGFLAGS);
flags ^= (-value ^ flags) & 1;
vm_write_reg(vm, VM_REGFLAGS, flags);
}
/*
* Execute an instruction
* */
void vm_execute(VM* vm, opcode instruction, uint32_t ip) {
switch (instruction) {
case op_rpush: {
uint8_t reg = vm->memory[ip + 1];
uint32_t size = vm_reg_size(reg);
void* ptr = vm->regs + (reg & VM_CODEMASK);
vm_stack_write_block(vm, ptr, size);
break;
}
case op_rpop: {
uint8_t reg = vm->memory[ip + 1];
uint32_t size = vm_reg_size(reg);
uint8_t* data = vm_stack_pop(vm, size);
uint32_t address = data - vm->memory;
vm_move_mem_to_reg(vm, reg, address, size);
break;
}
case op_mov: {
uint8_t target = vm->memory[ip + 1];
uint8_t source = vm->memory[ip + 2];
uint64_t value = REG(source);
vm_write_reg(vm, target, value);
break;
}
case op_loadi: {
uint8_t reg = vm->memory[ip + 1];
vm_move_mem_to_reg(vm, reg, ip + 2, vm_reg_size(reg));
break;
}
case op_rst: {
uint8_t reg = vm->memory[ip + 1];
vm_write_reg(vm, reg, 0);
break;
}
case op_add:
case op_sub:
case op_mul:
case op_div:
case op_idiv:
case op_rem:
case op_irem: {
uint8_t target = vm->memory[ip + 1];
uint8_t source = vm->memory[ip + 2];
uint64_t result;
switch (instruction) {
case op_add:
result = REG(target) + REG(source);
break;
case op_sub:
result = REG(target) - REG(source);
break;
case op_mul:
result = REG(target) * REG(source);
break;
case op_div:
result = REG(target) / REG(source);
break;
case op_idiv:
result = (int64_t)REG(target) / (int64_t)REG(source);
break;
case op_rem:
result = REG(target) % REG(source);
break;
case op_irem:
result = (int64_t)REG(target) % (int64_t)REG(source);
break;
default:
result = 0; // can't happen
break;
}
vm_set_zero_bit(vm, result == 0);
vm_write_reg(vm, target, result);
break;
}
case op_fadd:
case op_fsub:
case op_fmul:
case op_fdiv:
case op_frem:
case op_fexp: {
uint8_t target_reg = vm->memory[ip + 1];
uint8_t source_reg = vm->memory[ip + 2];
uint64_t target_uncasted_value = REG(target_reg);
uint64_t source_uncasted_value = REG(source_reg);
double target = *(double *)(&target_uncasted_value);
double source = *(double *)(&source_uncasted_value);
double result;
switch (instruction) {
case op_fadd:
result = target + source;
break;
case op_fsub:
result = target - source;
break;
case op_fmul:
result = target * source;
break;
case op_fdiv:
result = target / source;
break;
case op_frem:
result = fmod(target, source);
break;
case op_fexp:
result = pow(target, source);
break;
default:
result = 0; // can't happen
break;
}
vm_set_zero_bit(vm, result == (double)0);
vm_write_reg(vm, target_reg, result);
break;
}
case op_flt:
case op_fgt:
case op_cmp:
case op_lt:
case op_gt:
case op_ult:
case op_ugt: {
uint8_t left = vm->memory[ip + 1];
uint8_t right = vm->memory[ip + 2];
uint64_t left_uncasted_value = REG(left);
uint64_t right_uncasted_value = REG(right);
double left_f = *(double *)(&left_uncasted_value);
double right_f = *(double *)(&right_uncasted_value);
uint64_t left_ui = *(uint64_t *)(&left_uncasted_value);
uint64_t right_ui = *(uint64_t *)(&right_uncasted_value);
int64_t left_i = *(int64_t *)(&left_uncasted_value);
int64_t right_i = *(int64_t *)(&right_uncasted_value);
switch (instruction) {
case op_flt:
vm_set_zero_bit(vm, left_f < right_f);
break;
case op_fgt:
vm_set_zero_bit(vm, left_f > right_f);
break;
case op_cmp:
vm_set_zero_bit(vm, left_ui == right_ui);
break;
case op_lt:
vm_set_zero_bit(vm, left_i < right_i);
break;
case op_gt:
vm_set_zero_bit(vm, left_i > right_i);
break;
case op_ult:
vm_set_zero_bit(vm, left_ui < right_ui);
break;
case op_ugt:
vm_set_zero_bit(vm, left_ui > right_ui);
break;
default:
break; // can't happen
}
break;
}
case op_shr:
case op_shl:
case op_and:
case op_xor:
case op_or: {
uint8_t left_reg = vm->memory[ip + 1];
uint8_t right_reg = vm->memory[ip + 2];
uint64_t left = REG(left_reg);
uint64_t right = REG(right_reg);
uint64_t result;
switch (instruction) {
case op_shr:
result = left << right;
break;
case op_shl:
result = left >> right;
break;
case op_and:
result = left & right;
break;
case op_xor:
result = left ^ right;
break;
case op_or:
result = left | right;
break;
default:
break; // can't happen
}
vm_set_zero_bit(vm, result == 0);
break;
}
case op_not: {
uint8_t reg = vm->memory[ip + 1];
uint64_t value = REG(reg);
value = ~value;
vm_set_zero_bit(vm, value == 0);
vm_write_reg(vm, reg, value);
break;
}
case op_inttofp: {
uint8_t source = vm->memory[ip + 1];
double value = (double)REG(source);
vm_write_reg(vm, source, *(uint64_t *)(&value));
break;
}
case op_sinttofp: {
uint8_t source = vm->memory[ip + 1];
double value = (double)(int64_t)REG(source);
vm_write_reg(vm, source, *(uint64_t *)(&value));
break;
}
case op_fptoint: {
uint8_t source = vm->memory[ip + 1];
uint64_t reg_content = REG(source);
double value = *(double *)(®_content);
vm_write_reg(vm, source, (int64_t)value);
break;
}
case op_load: {
uint8_t reg = vm->memory[ip + 1];
int32_t offset = *(int32_t *)(vm->memory + ip + 2);
uint32_t fp = REG(VM_REGFP);
vm_move_mem_to_reg(vm, reg, fp + offset, vm_reg_size(reg));
break;
}
case op_loadr: {
uint8_t reg = vm->memory[ip + 1];
uint8_t offset_reg = *(uint8_t *)(vm->memory + ip + 2);
int32_t offset = (int32_t)REG(offset_reg);
uint32_t fp = REG(VM_REGFP);
vm_move_mem_to_reg(vm, reg, fp + offset, vm_reg_size(reg));
break;
}
case op_loads: {
uint32_t size = *(uint32_t *)(vm->memory + ip + 1);
int32_t offset = *(int32_t *)(vm->memory + ip + 5);
uint32_t fp = REG(VM_REGFP);
vm_stack_write_block(vm, (vm->memory + fp + offset), size);
break;
}
case op_loadsr: {
uint32_t size = *(uint32_t *)(vm->memory + ip + 1);
uint8_t offset_reg = *(uint8_t *)(vm->memory + ip + 2);
int32_t offset = (int32_t)REG(offset_reg);
uint32_t fp = REG(VM_REGFP);
vm_stack_write_block(vm, (vm->memory + fp + offset), size);
break;
}
case op_store: {
int32_t offset = *(int32_t *)(vm->memory + ip + 1);
uint8_t reg = vm->memory[ip + 5];
uint32_t fp = REG(VM_REGFP);
uint64_t value = REG(reg);
switch (vm_reg_size(reg)) {
case 1:
*((uint8_t *) (vm->memory + fp + offset)) = value;
break;
case 2:
*((uint16_t *) (vm->memory + fp + offset)) = value;
break;
case 4:
*((uint32_t *) (vm->memory + fp + offset)) = value;
break;
case 8:
*((uint64_t *) (vm->memory + fp + offset)) = value;
break;
default:
break; // Can't happen
}
break;
}
case op_push: {
uint32_t size = *(uint32_t *)(vm->memory + ip + 1);
void* data = (void* )(vm->memory + ip + 5);
vm_stack_write_block(vm, data, size);
break;
}
case op_read: {
uint8_t target = vm->memory[ip + 1];
uint8_t source = vm->memory[ip + 2];
uint32_t address = REG(source);
uint32_t size = vm_reg_size(target);
if (!vm_legal_address(address) || !vm_legal_address(address + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
vm_move_mem_to_reg(vm, target, address, size);
break;
}
case op_readc: {
uint8_t target = vm->memory[ip + 1];
uint32_t address = *(uint32_t *)(vm->memory + ip + 2);
uint32_t size = vm_reg_size(target);
if (!vm_legal_address(address) || !vm_legal_address(address + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
vm_move_mem_to_reg(vm, target, address, size);
break;
}
case op_reads: {
uint32_t size = *(uint32_t *)(vm->memory + ip + 1);
uint8_t source = *(uint8_t *)(vm->memory + ip + 5);
uint32_t address = REG(source);
if (!vm_legal_address(address) || !vm_legal_address(address + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
vm_stack_write_block(vm, vm->memory + address, size);
break;
}
case op_readcs: {
uint32_t size = *(uint32_t *)(vm->memory + ip + 1);
uint32_t address = *(uint32_t *)(vm->memory + ip + 5);
if (!vm_legal_address(address) || !vm_legal_address(address + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
vm_stack_write_block(vm, vm->memory + address, size);
break;
}
case op_write: {
uint8_t target = vm->memory[ip + 1];
uint8_t source = vm->memory[ip + 2];
uint32_t address = REG(target);
uint32_t size = vm_reg_size(source);
if (!vm_legal_address(address) || !vm_legal_address(address + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
memmove(vm->memory + address, vm->regs + source, size);
break;
}
case op_writec: {
uint32_t address = *(uint32_t *)(vm->memory + ip + 1);
uint8_t source = vm->memory[ip + 5];
uint32_t size = vm_reg_size(source);
if (!vm_legal_address(address) || !vm_legal_address(address + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
memmove(vm->memory + address, vm->regs + source, size);
break;
}
case op_writes: {
uint8_t target = vm->memory[ip + 1];
uint32_t size = *(uint32_t *)(vm->memory + ip + 2);
uint32_t address = REG(target);
if (!vm_legal_address(address) || !vm_legal_address(address + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
void* data = vm_stack_pop(vm, size);
memmove(vm->memory + address, data, size);
break;
}
case op_writecs: {
uint32_t address = *(uint32_t *)(vm->memory + ip + 1);
uint32_t size = *(uint32_t *)(vm->memory + ip + 5);
if (!vm_legal_address(address) || !vm_legal_address(address + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
void* data = vm_stack_pop(vm, size);
memmove(vm->memory + address, data, size);
break;
}
case op_copy: {
uint8_t target = REG(vm->memory[ip + 1]);
uint32_t size = *(uint32_t *)(vm->memory + ip + 2);
uint8_t source = REG(vm->memory[ip + 6]);
if (!vm_legal_address(target) || !vm_legal_address(target + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
if (!vm_legal_address(source) || !vm_legal_address(source + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
memmove(vm->memory + target, vm->memory + source, size);
break;
}
case op_copyc: {
uint32_t target = *(uint32_t *)(vm->memory + ip + 1);
uint32_t size = *(uint32_t *)(vm->memory + ip + 5);
uint32_t source = *(uint32_t *)(vm->memory + ip + 9);
if (!vm_legal_address(target) || !vm_legal_address(target + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
if (!vm_legal_address(source) || !vm_legal_address(source + size)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
memmove(vm->memory + target, vm->memory + source, size);
break;
}
case op_jz: {
uint32_t address = *(uint32_t *)(vm->memory + ip + 1);
if (vm_is_zero_bit_set(vm)) {
vm_write_reg(vm, VM_REGIP, address);
}
break;
}
case op_jzr: {
uint8_t reg = vm->memory[ip + 1];
uint32_t address = REG(reg);
if (vm_is_zero_bit_set(vm)) {
vm_write_reg(vm, VM_REGIP, address);
}
break;
}
case op_jmp: {
uint32_t address = *(uint32_t *)(vm->memory + ip + 1);
vm_write_reg(vm, VM_REGIP, address);
break;
}
case op_jmpr: {
uint8_t reg = vm->memory[ip + 1];
uint32_t address = REG(reg);
vm_write_reg(vm, VM_REGIP, address);
break;
}
case op_call: {
uint32_t address = *(uint32_t *)(vm->memory + ip + 1);
vm_push_stack_frame(vm, ip + 5);
vm_write_reg(vm, VM_REGIP, address);
break;
}
case op_callr: {
uint8_t reg = vm->memory[ip + 1];
uint32_t address = REG(reg);
vm_push_stack_frame(vm, ip + 2);
vm_write_reg(vm, VM_REGIP, address);
break;
}
case op_ret: {
uint32_t stack_frame_baseadr = REG(VM_REGFP);
// Check out-of-bounds
if (!vm_legal_address(stack_frame_baseadr + 12)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
// Read the current stackframe
uint32_t fp = *(uint32_t *)(vm->memory + stack_frame_baseadr);
uint32_t ra = *(uint32_t *)(vm->memory + stack_frame_baseadr + 4);
uint32_t ac = *(uint32_t *)(vm->memory + stack_frame_baseadr + 8);
uint32_t sp = stack_frame_baseadr + 12 + ac;
// Check if the new stack pointer is out of bounds
if (!vm_legal_address(sp)) {
vm->exit_code = ILLEGAL_MEMORY_ACCESS;
vm->running = false;
return;
}
vm_write_reg(vm, VM_REGSP, sp);
vm_write_reg(vm, VM_REGFP, fp);
vm_write_reg(vm, VM_REGIP, ra);
break;
}
case op_nop: { break; }
case op_syscall: {
uint16_t id = *(uint16_t *)vm_stack_pop(vm, 2);
switch (id) {
case VM_SYS_EXIT: {
uint8_t exit_code = *(uint8_t *)vm_stack_pop(vm, 1);
vm_write_reg(vm, 0 | VM_REGBYTE, exit_code);
vm->exit_code = REGULAR_EXIT;
vm->running = false;
break;
}
case VM_SYS_SLEEP: {
double duration = *(double *)vm_stack_pop(vm, 8);
usleep((unsigned int)(1000 * 1000 * duration));
break;
}
case VM_SYS_WRITE: {