-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidateMethods.py
195 lines (157 loc) · 5.78 KB
/
validateMethods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# %%
from mne.filter import filter_data
from mne.io.pick import pick_channels
from numpy.core.defchararray import index, mod, split
from numpy.core.fromnumeric import product, sort
from numpy.lib.arraysetops import unique
import numpy as np
import matplotlib.pyplot as plt
from numpy.lib.function_base import extract
from sklearn import svm
import classification_methods as methods
from sklearn.metrics import accuracy_score,confusion_matrix
from scipy import signal
from collections import Counter
from mne.preprocessing.xdawn import _fit_xdawn
from imblearn.under_sampling import RandomUnderSampler
import pickle
import warnings
import scipy.io as scio
import os
from tqdm import tqdm
warnings.filterwarnings('ignore')
# %%
# 读取训练集
# 读取数据
rootdir = 'mini-data'
file_list = os.listdir(path=rootdir)
if '.DS_Store' in file_list:
file_list.remove('.DS_Store')
WholeSet = []
GoldenLableSet = []
file_list.sort(key = lambda x:x[:-5])
file_list = sorted(file_list)
for filename in tqdm(file_list):
if '.DS_Store' != filename:
data_name = os.path.join(rootdir,filename)
raw_data = scio.loadmat(data_name)
EEGdata1 = raw_data['EEGdata1']
EEGdata2 = raw_data['EEGdata2']
trigger = raw_data['trigger_positions']
label = raw_data['class_labels']
# 总共有两个block
epoch_A = methods.Raw2Epoch(EEGdata1,trigger[0],srate=250)
epoch_B = methods.Raw2Epoch(EEGdata2,trigger[1],srate=250)
# 拼接两个block
epoch = np.concatenate((epoch_A,epoch_B),axis=0)
channel_sel = [1,4,6,10,15,18,20,25,27,29,30,35,40,41,42,46,50,55,60]
epoch_sel = epoch[:,channel_sel,:]
label = np.concatenate(label,axis=0)
# data and label
label = (label==1)*1 #label 转换为0-1
WholeSet.append(epoch_sel)
GoldenLableSet.append(label)
#%%
# 分割数据和
# channel_sel = np.linspace(0,channelNUM-1,num=channelNUM-1).astype(int)
# channel_sel = np.delete(channel_sel,33,axis=0)
# repository 作为选择了导联的数据
repository = WholeSet
label_repository = GoldenLableSet
subNUM = len((repository))
epochNUM,channelNUM, Time = np.shape(repository[0])
# 将repository按block分成训练和测试
train_X = repository[::2] #将block1作为训练
train_y = label_repository[::2]
test_X = repository[1::2] #将block2作为测试
test_y = label_repository[1::2]
train_data = []
train_label = []
test_data = []
test_label = []
# 平衡数据类别
for subINX in tqdm(range(int(subNUM/2))):
# balance train
train_data_temp = np.reshape(train_X[subINX],(epochNUM,channelNUM*Time))
rus = RandomUnderSampler(sampling_strategy=0.2)
train_data_balanced, train_label_balanced = rus.fit_resample(train_data_temp,train_y[subINX])
train_data.append(np.reshape(train_data_balanced,(train_label_balanced.shape[0],channelNUM,Time)))
train_label.append(train_label_balanced)
test_data_temp = np.reshape(test_X[subINX],(epochNUM,channelNUM*Time))
rus = RandomUnderSampler(sampling_strategy=0.2)
test_data_balanced, test_label_balanced = rus.fit_resample(test_data_temp, test_y[subINX])
test_data.append(np.reshape(test_data_balanced,(test_data_balanced.shape[0],channelNUM,Time)))
test_label.append(test_label_balanced)
# %%
trca_svm = svm.SVC()
trca_svm.fit(enhanced_train,sub_label)
predicted = trca_svm.predict(enhanced_test)
trca_svm.score(enhanced_test,test_label[0])
# %%
from spatialFilter import TRCA, Xdawn
xdawn = Xdawn(n_components=6)
xdawn.fit(train_data[0],train_label[0])
# train
train_enhanced = xdawn.transform(train_data[0])
# test
test_enhanced = xdawn.transform(test_data[0])
# %%
train_enhanced.shape
plt.plot(np.mean(train_enhanced[train_label[0]==0],axis=0))
plt.plot(np.mean(train_enhanced[train_label[0]==1],axis=0))
# %%
from sklearn.preprocessing import label_binarize
svc = svm.SVC()
y_train= label_binarize(train_label[0], classes=[0, 1])
y_test = label_binarize(test_label[0], classes=[0, 1])
svc.fit(train_enhanced,y_train)
#%%
from sklearn.preprocessing import label_binarize
y_test = label_binarize(test_label[0], classes=[0, 1])
y_train = label_binarize(test_label[0], classes=[0, 1])
# %%
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import roc_auc_score
y_score = svc.decision_function(test_enhanced)
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(2):
fpr[i], tpr[i], _ = roc_curve(y_test[:,i], y_score[:,i])
roc_auc[i] = auc(fpr[i], tpr[i])
# %%
from sklearn.metrics import plot_roc_curve
svc_disp = plot_roc_curve(svc, test_enhanced, test_label[0])
plt.show()
# %%
from spatialFilter import CSP
csp = CSP(n_components=10,transform_into='csp_space',cov_est='concat')
csp.fit(train_data[0],train_label[0])
# train
train_enhanced = csp.transform(train_data[0])
# test
test_enhanced = csp.transform(test_data[0])
# %%
plt.plot(np.mean(train_enhanced[train_label[0]==0],axis=0))
plt.plot(np.mean(train_enhanced[train_label[0]==1],axis=0))
# %%
from sklearn.pipeline import Pipeline
from spatialFilter import Xdawn,TRCA,CSP
from sklearn.svm import SVC
pipe_1 = Pipeline([('spatialfilters', Xdawn(n_components=6)), ('svc', SVC())])
pipe_1.fit(train_data[0],train_label[0])
predicted = pipe_1.predict(test_data[0])
pipe_2 = Pipeline([('spatialfilters', CSP(n_components=6,transform_into='csp_space')), ('svc', SVC())])
pipe_2.fit(train_data[0],train_label[0])
predicted = pipe_2.predict(test_data[0])
pipe_3 = Pipeline([('spatialfilters', TRCA(n_components=6)), ('svc', SVC())])
pipe_3.fit(train_data[0],train_label[0])
predicted = pipe_3.predict(test_data[0])
# %%
from sklearn.metrics import plot_roc_curve
svc_disp = plot_roc_curve(pipe_1, test_data[0], test_label[0])
svc_disp = plot_roc_curve(pipe_2, test_data[0], test_label[0])
svc_disp = plot_roc_curve(pipe_3, test_data[0], test_label[0])
plt.show()
# %%
# %%