-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathA_VAE.py
374 lines (313 loc) · 15.6 KB
/
A_VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""
Train G-Intro VAE for image datasets
Author: Changjie Lu
"""
# Purpose:
# linear decay (line:165)
# imports
# torch and friends
from functools import reduce
from tkinter import Variable
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.utils as vutils
import torch.nn.functional as F
from torchvision.utils import make_grid
from torchvision.datasets import CIFAR10, MNIST, FashionMNIST, SVHN, LSUN
from torchvision import transforms
import os
import random
import time
import numpy as np
from tqdm import tqdm
import pickle
# from dataset import ImageDatasetFromFile, DigitalMonstersDataset
from metrics.fid_score import calculate_fid_given_dataset
import matplotlib.pyplot as plt
import matplotlib
from utils import *
matplotlib.use('Agg')
from utils import *
"""
Train Functions
"""
def Train_AVAE(dataset='cifar10', z_dim=128, lr_d=2e-4, lr_g=2e-4, batch_size=128, num_workers=4,
start_epoch=0, exit_on_negative_diff=False,
num_epochs=250, num_vae=0, save_interval=25, recon_loss_type="mse",
beta_kl=1.0, beta_rec=1.0, beta_neg=1.0, test_iter=1000, seed=-1, pretrained=None,
device=torch.device("cpu"), num_row=8, gamma_r=1e-8, with_fid=True,device_ids=[0]):
"""
:param dataset: dataset to train on: ['cifar10', 'mnist', 'fmnist', 'svhn', 'monsters128', 'celeb128', 'celeb256', 'celeb1024']
:param z_dim: latent dimensions
:param lr_d: learning rate for discriminator
:param lr_g: learning rate for generator
:param batch_size: batch size
:param num_workers: num workers for the loading the data
:param start_epoch: epoch to start from
:param exit_on_negative_diff: stop run if mean kl diff between fake and real is negative after 50 epochs
:param num_epochs: total number of epochs to run
:param num_vae: number of epochs for vanilla vae training
:param save_interval: epochs between checkpoint saving
:param recon_loss_type: type of reconstruction loss ('mse', 'l1', 'bce')
:param beta_kl: beta coefficient for the kl divergence
:param beta_rec: beta coefficient for the reconstruction loss
:param beta_neg: beta coefficient for the kl divergence in the expELBO function
:param test_iter: iterations between sample image saving
:param seed: seed
:param pretrained: path to pretrained model, to continue training
:param device: device to run calculation on - torch.device('cuda:x') or torch.device('cpu')
:param num_row: number of images in a row gor the sample image saving
:param gamma_r: coefficient for the reconstruction loss for fake data in the decoder
:param with_fid: calculate FID during training (True/False)
:return:
"""
# Set random seed
if seed != -1:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
print("random seed: ", seed)
# Set Result Path and Model Name
fig_dir = './results/AVAE5/figures_' + dataset
name = 'G_VAE5'
os.makedirs(fig_dir, exist_ok=True)
# Get Dataset
# NOTE: ch for pictures, usually 3 or 1
# NOTE: channels for latent space
ch, channels,image_size,train_data_loader = get_dataset(dataset,batch_size,num_workers)
# Build Model
model = get_model(z_dim,pretrained,ch, channels, image_size,device)
model.encoder = nn.DataParallel(model.encoder,device_ids=device_ids)
model.decoder = nn.DataParallel(model.decoder,device_ids=device_ids)
# Build Exponential Moving Average
ema = EMA(model.decoder,0.999)
ema.register()
# Build Optimizer
optimizer_d = optim.Adam(model.encoder.parameters(), lr=lr_d)
optimizer_g = optim.Adam(model.decoder.parameters(), lr=lr_g)
# Build Learning Rate Scheduler
e_scheduler = optim.lr_scheduler.MultiStepLR(optimizer_d, milestones=(350,), gamma=0.1)
d_scheduler = optim.lr_scheduler.MultiStepLR(optimizer_g, milestones=(350,), gamma=0.1)
# Calculate Gaussian Distance
distance = Gaussian_Distance(1)
# Normalize
scale = 1 / (ch * image_size ** 2) # normalize by images size (channels * height * width)
start_time = time.time()
cur_iter = 0
kls_real = []
kls_fake = []
kls_rec = []
rec_errs = []
exp_elbos_f = []
exp_elbos_r = []
# best_fid = None
# Per Epoch Training
for epoch in range(start_epoch, num_epochs):
# NOTE: (see util.py for calculating fid score)
# save models
if epoch % save_interval == 0 and epoch > 0:
save_epoch = (epoch // save_interval) * save_interval
prefix = dataset + "_g_intro" + "_betas_" + str(beta_kl) + "_" + str(beta_neg) + "_" + str(
beta_rec) + "_"
save_checkpoint(name, model, save_epoch, cur_iter, prefix)
model.train()
diff_kls = []
batch_kls_real = []
batch_kls_fake = []
batch_kls_rec = []
batch_rec_errs = []
batch_exp_elbo_f = []
batch_exp_elbo_r = []
pbar = tqdm(iterable=train_data_loader)
total_iter = len(pbar)
# Per Iteration Training
for batch in pbar:
# --------------train------------
# TODO: add comments, simplify code
if dataset in ["cifar10", "svhn", "fmnist", "mnist",'lsun']:
batch = batch[0]
c = get_coef(cur_iter,epoch_iter=total_iter,epoch=num_epochs,mode='tanh')
print(c)
if len(batch.size()) == 3:
batch = batch.unsqueeze(0)
b_size = batch.size(0)
noise_batch = torch.randn(size=(b_size, z_dim)).to(device)
real_batch = batch.to(device)
# =========== Update E ================
for param in model.encoder.parameters():
param.requires_grad = True
for param in model.decoder.parameters():
param.requires_grad = False
fake = model.sample(noise_batch)
real_mu, real_logvar = model.encode(real_batch)
z = reparameterize(real_mu, real_logvar)
rec = model.decoder(z)
loss_rec = calc_reconstruction_loss(real_batch, rec, loss_type=recon_loss_type, reduction="mean")
lossE_real_kl = calc_kl(real_logvar, real_mu, reduce="mean")
rec_mu, rec_logvar, z_rec, rec_rec = model(rec.detach())
fake_mu, fake_logvar, z_fake, rec_fake = model(fake.detach())
kl_rec = calc_kl(rec_logvar, rec_mu, reduce="none")
kl_fake = calc_kl(fake_logvar, fake_mu, reduce="none")
loss_rec_rec_e = calc_reconstruction_loss(rec, rec_rec, loss_type=recon_loss_type, reduction='none')
while len(loss_rec_rec_e.shape) > 1:
loss_rec_rec_e = loss_rec_rec_e.sum(-1)
loss_rec_fake_e = calc_reconstruction_loss(fake, rec_fake, loss_type=recon_loss_type, reduction='none')
while len(loss_rec_fake_e.shape) > 1:
loss_rec_fake_e = loss_rec_fake_e.sum(-1)
rec_mu = nn.Tanh()(rec_mu)
rec_logvar = nn.Tanh()(rec_logvar)
fake_mu = nn.Tanh()(fake_mu)
fake_logvar = nn.Tanh()(fake_logvar)
dis = distance(rec_mu,rec_logvar,fake_mu,fake_logvar,reduce='none')
# NOTE: depends on performance, may change these two lines with backup
expelbo_rec = (-2 * scale * (beta_rec * loss_rec_rec_e + beta_neg * (c*kl_rec+(1-c)*dis))).exp().mean()
expelbo_fake = (-2 * scale * (beta_rec * loss_rec_fake_e + beta_neg * (c*kl_fake+(1-c)*dis))).exp().mean()
lossE_fake = 0.25 * (expelbo_rec + expelbo_fake)
lossE_real = scale * (beta_rec * loss_rec + beta_kl * lossE_real_kl)
lossE = lossE_real + lossE_fake
if cur_iter % 50 == 0:
print("lossE fake:{},lossE real:{}".format(scale *beta_neg * kl_rec,lossE_real))
print('coef',c)
optimizer_d.zero_grad()
lossE.backward()
optimizer_d.step()
# ========= Update D ==================
for param in model.encoder.parameters():
param.requires_grad = False
for param in model.decoder.parameters():
param.requires_grad = True
fake = model.sample(noise_batch)
rec = model.decoder(z.detach())
loss_rec = calc_reconstruction_loss(real_batch, rec, loss_type=recon_loss_type, reduction="mean")
rec_mu, rec_logvar = model.encode(rec)
z_rec = reparameterize(rec_mu, rec_logvar)
fake_mu, fake_logvar = model.encode(fake)
z_fake = reparameterize(fake_mu, fake_logvar)
rec_rec = model.decode(z_rec.detach())
rec_fake = model.decode(z_fake.detach())
loss_rec_rec = calc_reconstruction_loss(rec.detach(), rec_rec, loss_type=recon_loss_type,
reduction="mean")
loss_fake_rec = calc_reconstruction_loss(fake.detach(), rec_fake, loss_type=recon_loss_type,
reduction="mean")
rec_mu = nn.Tanh()(rec_mu)
rec_logvar = nn.Tanh()(rec_logvar)
fake_mu = nn.Tanh()(fake_mu)
fake_logvar = nn.Tanh()(fake_logvar)
lossD_rec_kl = calc_kl(rec_logvar, rec_mu, reduce="mean")
lossD_fake_kl = calc_kl(fake_logvar, fake_mu, reduce="mean")
dis = distance(rec_mu,rec_logvar,fake_mu,fake_logvar,reduce='mean')
lossD = scale * (loss_rec * beta_rec + (
c*(lossD_rec_kl + lossD_fake_kl)+(1-c)*dis) * 0.5 * beta_kl + gamma_r * 0.5 * beta_rec * (
loss_rec_rec + loss_fake_rec))
if cur_iter % 50 == 0:
print("lossD:{},lossD kl:{}".format(lossD,lossD_fake_kl+lossD_rec_kl))
optimizer_g.zero_grad()
lossD.backward()
optimizer_g.step()
ema.update()
if torch.isnan(lossD) or torch.isnan(lossE):
raise SystemError
dif_kl = -lossE_real_kl.data.cpu() + lossD_fake_kl.data.cpu()
pbar.set_description_str('epoch #{}'.format(epoch))
pbar.set_postfix(r_loss=loss_rec.data.cpu().item(), kl=lossE_real_kl.data.cpu().item(),
diff_kl=dif_kl.item(), expelbo_f=expelbo_fake.cpu().item())
diff_kls.append(-lossE_real_kl.data.cpu().item() + lossD_fake_kl.data.cpu().item())
batch_kls_real.append(lossE_real_kl.data.cpu().item())
batch_kls_fake.append(lossD_fake_kl.cpu().item())
batch_kls_rec.append(lossD_rec_kl.data.cpu().item())
batch_rec_errs.append(loss_rec.data.cpu().item())
batch_exp_elbo_f.append(expelbo_fake.data.cpu())
batch_exp_elbo_r.append(expelbo_rec.data.cpu())
if cur_iter % test_iter == 0:
_, _, _, rec_det = model(real_batch, deterministic=True)
ema.apply_shadow()
fake = model.sample(noise_batch)
max_imgs = min(batch.size(0), 16)
vutils.save_image(
torch.cat([real_batch[:max_imgs], rec_det[:max_imgs], fake[:max_imgs]], dim=0).data.cpu(),
'{}/image_{}.jpg'.format(fig_dir, cur_iter), nrow=num_row)
ema.restore()
cur_iter += 1
e_scheduler.step()
d_scheduler.step()
pbar.close()
if exit_on_negative_diff and epoch > 50 and np.mean(diff_kls) < -1.0:
print(
f'the kl difference [{np.mean(diff_kls):.3f}] between fake and real is negative (no sampling improvement)')
print("try to lower beta_neg hyperparameter")
print("exiting...")
raise SystemError("Negative KL Difference")
if epoch > num_vae - 1:
kls_real.append(np.mean(batch_kls_real))
kls_fake.append(np.mean(batch_kls_fake))
kls_rec.append(np.mean(batch_kls_rec))
rec_errs.append(np.mean(batch_rec_errs))
exp_elbos_f.append(np.mean(batch_exp_elbo_f))
exp_elbos_r.append(np.mean(batch_exp_elbo_r))
# epoch summary
print('#' * 50)
print(f'Epoch {epoch} Summary:')
print(f'beta_rec: {beta_rec}, beta_kl: {beta_kl}, beta_neg: {beta_neg}')
print(
f'rec: {rec_errs[-1]:.3f}, kl: {kls_real[-1]:.3f}, kl_fake: {kls_fake[-1]:.3f}, kl_rec: {kls_rec[-1]:.3f}')
print(
f'diff_kl: {np.mean(diff_kls):.3f}, exp_elbo_f: {exp_elbos_f[-1]:.4e}, exp_elbo_r: {exp_elbos_r[-1]:.4e}')
print(f'time: {time.time() - start_time}')
print('#' * 50)
if epoch == num_epochs - 1:
with torch.no_grad():
_, _, _, rec_det = model(real_batch, deterministic=True)
noise_batch = torch.randn(size=(b_size, z_dim)).to(device)
fake = model.sample(noise_batch)
max_imgs = min(batch.size(0), 16)
vutils.save_image(
torch.cat([real_batch[:max_imgs], rec_det[:max_imgs], fake[:max_imgs]], dim=0).data.cpu(),
'{}/image_{}.jpg'.format(fig_dir, cur_iter), nrow=num_row)
# plot graphs
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(np.arange(len(kls_real)), kls_real, label="kl_real")
ax.plot(np.arange(len(kls_fake)), kls_fake, label="kl_fake")
ax.plot(np.arange(len(kls_rec)), kls_rec, label="kl_rec")
ax.plot(np.arange(len(rec_errs)), rec_errs, label="rec_err")
ax.legend()
plt.savefig('./plot_loss/{}.jpg'.format(name))
with open('./{}.pickle'.format(name), 'wb') as fp:
graph_dict = {"kl_real": kls_real, "kl_fake": kls_fake, "kl_rec": kls_rec, "rec_err": rec_errs}
pickle.dump(graph_dict, fp)
# save models
prefix = dataset + name + "_betas_" + str(beta_kl) + "_" + str(beta_neg) + "_" + str(
beta_rec) + "_"
save_checkpoint(name, model, epoch, cur_iter, prefix)
model.train()
if __name__ == '__main__':
"""
Recommended hyper-parameters:
- CIFAR10: beta_kl: 1.0, beta_rec: 1.0, beta_neg: 256, z_dim: 128, batch_size: 32
- SVHN: beta_kl: 1.0, beta_rec: 1.0, beta_neg: 256, z_dim: 128, batch_size: 32
- MNIST: beta_kl: 1.0, beta_rec: 1.0, beta_neg: 256, z_dim: 32, batch_size: 128
- FashionMNIST: beta_kl: 1.0, beta_rec: 1.0, beta_neg: 256, z_dim: 32, batch_size: 128
- Monsters: beta_kl: 0.2, beta_rec: 0.2, beta_neg: 256, z_dim: 128, batch_size: 16
- CelebA-HQ: beta_kl: 1.0, beta_rec: 0.5, beta_neg: 1024, z_dim: 256, batch_size: 8
"""
beta_kl = 1.0
beta_rec = 1.0
beta_neg = 256
if torch.cuda.is_available():
torch.cuda.current_device()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
print("betas: ", beta_kl, beta_neg, beta_rec)
try:
Train_AVAE(dataset="monsters128", z_dim=128, batch_size=16, num_workers=0, num_epochs=400,
num_vae=0, beta_kl=beta_kl, beta_neg=beta_neg, beta_rec=beta_rec,
device=device, save_interval=50, start_epoch=0, lr_e=2e-4, lr_d=2e-4,
pretrained=None,
test_iter=1000, with_fid=False)
except SystemError:
print("Error, probably loss is NaN, try again...")