-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRun.py
78 lines (53 loc) · 2.89 KB
/
Run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import pandas as pd
from Model import Wide, Deep, Wide_Deep
from Data import Data
file_path = os.path.dirname(os.path.realpath('__file__'))
class Run:
def __init__(self):
columns = ["age", "workclass", "fnlwgt", "education", "education_num",
"marital_status", "occupation", "relationship", "race", "gender",
"capital_gain", "capital_loss", "hours_per_week", "native_country",
"income_bracket"]
self.df_train = pd.read_csv(file_path + '/data/adult.data', sep=',', names = columns)
self.df_test = pd.read_csv(file_path + '/data/adult.test', sep=',', names = columns, skipinitialspace=True, skiprows=1)
# infome_label추가
self.df_train['income_label'] = (self.df_train["income_bracket"].apply(lambda x: ">50K" in x)).astype(int)
self.df_test['income_label'] = (self.df_test["income_bracket"].apply(lambda x: ">50K" in x)).astype(int)
# age_group 추가
age_groups = [0, 25, 65, 90]
age_labels = range(len(age_groups) - 1)
self.df_train['age_group'] = pd.cut(self.df_train['age'], age_groups, labels=age_labels)
self.df_test['age_group'] = pd.cut(self.df_test['age'], age_groups, labels=age_labels)
target = 'income_label'
def Wide(self):
load = Data()
X_train, y_train, X_test, y_test = load.get_wide_model_data(self.df_train, self.df_test)
model = Wide(X_train, y_train)
model = model.get_model()
model.fit(X_train, y_train, epochs=10, batch_size=64)
print('wide model accuracy:', model.evaluate(X_test, y_test)[1])
def Deep(self):
load = Data()
X_train, y_train, X_test, y_test, \
embeddings_tensors, continuous_tensors = load.get_deep_model_data(self.df_train, self.df_test)
model = Deep(X_train, y_train, embeddings_tensors, continuous_tensors)
model = model.get_model()
model.fit(X_train, y_train, batch_size=64, epochs=10)
print('deep model accuracy:', model.evaluate(X_test, y_test)[1])
def Wide_and_Deep(self):
load = Data()
X_train_wide, y_train_wide, X_test_wide, y_test_wide = load.get_wide_model_data(self.df_train, self.df_test)
X_train_deep, y_train_deep, X_test_deep, y_test_deep, \
embeddings_tensors, continuous_tensors = load.get_deep_model_data(self.df_train, self.df_test)
X_tr_wd = [X_train_wide] + X_train_deep
y_tr_wd = y_train_deep
X_te_wd = [X_test_wide] + X_test_deep
y_te_wd = y_test_deep
model = Wide_Deep(X_train_wide, y_train_wide, X_train_deep, y_train_deep, embeddings_tensors, continuous_tensors)
model = model.get_model()
model.fit(X_tr_wd, y_tr_wd, epochs=5, batch_size=128)
print('wide and deep model accuracy:', model.evaluate(X_te_wd, y_te_wd)[1])
if __name__ == '__main__' :
run = Run()
run.Wide_and_Deep()