|
| 1 | +from timeit import default_timer |
| 2 | +import torch.nn.functional as F |
| 3 | +from torch_geometric.data import DataLoader |
| 4 | +from src.utils.utilities import * |
| 5 | +from src.models.model_baseline import KernelGKN |
| 6 | +from src.data.data_processing import convert_data_to_mesh |
| 7 | + |
| 8 | +################ |
| 9 | +# MAIN PROGRAM # |
| 10 | +################ |
| 11 | + |
| 12 | +if __name__ == "__main__": |
| 13 | + ######################################################################## |
| 14 | + # |
| 15 | + # Hyperparameters |
| 16 | + # |
| 17 | + ######################################################################## |
| 18 | + |
| 19 | + PATH = "" |
| 20 | + TRAIN_PATH = "/data/migus/mgkn_revamped/burgers_data_R10.mat" |
| 21 | + TEST_PATH = "/data/migus/mgkn_revamped/burgers_data_R10.mat" |
| 22 | + |
| 23 | + r = 16 |
| 24 | + s = 2 ** 13 // r |
| 25 | + K = s |
| 26 | + |
| 27 | + n = s |
| 28 | + k = 2 |
| 29 | + |
| 30 | + m = [512] |
| 31 | + |
| 32 | + radius_inner = [0.5 / 8] |
| 33 | + radius_inter = 0 |
| 34 | + |
| 35 | + batch_size = 1 |
| 36 | + batch_size2 = 1 |
| 37 | + |
| 38 | + ntrain = 100 |
| 39 | + ntest = 100 |
| 40 | + |
| 41 | + # rbf_sigma = 0.2 |
| 42 | + |
| 43 | + level = len(m) |
| 44 | + print("resolution", s) |
| 45 | + |
| 46 | + width = 64 |
| 47 | + ker_width = 256 |
| 48 | + depth = 4 |
| 49 | + edge_features = 4 |
| 50 | + node_features = 2 |
| 51 | + |
| 52 | + epochs = 200 |
| 53 | + init_gain = 0.8 |
| 54 | + learning_rate = 0.0001 |
| 55 | + scheduler_step = 10 |
| 56 | + scheduler_gamma = 0.85 |
| 57 | + |
| 58 | + ####### |
| 59 | + # GPU # |
| 60 | + ####### |
| 61 | + |
| 62 | + gpu = 1 |
| 63 | + torch.cuda.set_device(gpu) |
| 64 | + print(f"Using GPU: {torch.cuda.current_device()}") |
| 65 | + |
| 66 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 67 | + print("Using device:", device) |
| 68 | + # if device=='cuda': |
| 69 | + # torch.cuda.set_device(0) |
| 70 | + torch.set_num_threads(1) |
| 71 | + |
| 72 | + ############### |
| 73 | + # RANDOM SEED for data generation # |
| 74 | + ############### |
| 75 | + |
| 76 | + RANDOM_SEED = 0 |
| 77 | + |
| 78 | + torch.backends.cudnn.deterministic = False |
| 79 | + np.random.seed(RANDOM_SEED) |
| 80 | + torch.manual_seed(RANDOM_SEED) |
| 81 | + torch.cuda.manual_seed_all(RANDOM_SEED) |
| 82 | + |
| 83 | + ################################################################ |
| 84 | + # load data |
| 85 | + ################################################################ |
| 86 | + |
| 87 | + runtime = np.zeros(2,) |
| 88 | + |
| 89 | + t1 = default_timer() |
| 90 | + |
| 91 | + reader = MatReader(TRAIN_PATH, device_cuda=gpu) |
| 92 | + train_a = reader.read_field("a")[:ntrain, ::r].reshape(ntrain, -1) |
| 93 | + train_u = reader.read_field("u")[:ntrain, ::r].reshape(ntrain, -1) |
| 94 | + |
| 95 | + reader.load_file(TEST_PATH) |
| 96 | + test_a = reader.read_field("a")[-ntest:, ::r].reshape(ntest, -1) |
| 97 | + test_u = reader.read_field("u")[-ntest:, ::r].reshape(ntest, -1) |
| 98 | + |
| 99 | + a_normalizer = GaussianNormalizer(train_a) |
| 100 | + train_a = a_normalizer.encode(train_a) |
| 101 | + test_a = a_normalizer.encode(test_a) |
| 102 | + |
| 103 | + u_normalizer = UnitGaussianNormalizer(train_u) |
| 104 | + train_u = u_normalizer.encode(train_u) |
| 105 | + |
| 106 | + data_train = convert_data_to_mesh( |
| 107 | + [train_a], train_u, ntrain, k, s, m, radius_inner, radius_inter |
| 108 | + ) |
| 109 | + |
| 110 | + data_test = convert_data_to_mesh( |
| 111 | + [test_a], test_u, ntest, k, s, m, radius_inner, radius_inter |
| 112 | + ) |
| 113 | + print(data_test[0]) |
| 114 | + # pdb.set_trace() |
| 115 | + train_loader = DataLoader(data_train, batch_size=batch_size, shuffle=True) |
| 116 | + test_loader = DataLoader(data_test, batch_size=batch_size2, shuffle=False) |
| 117 | + |
| 118 | + ######################################################################## |
| 119 | + # |
| 120 | + # Training |
| 121 | + # |
| 122 | + ######################################################################## |
| 123 | + |
| 124 | + RANDOM_SEED = 1 |
| 125 | + |
| 126 | + torch.backends.cudnn.deterministic = False |
| 127 | + np.random.seed(RANDOM_SEED) |
| 128 | + torch.manual_seed(RANDOM_SEED) |
| 129 | + torch.cuda.manual_seed_all(RANDOM_SEED) |
| 130 | + |
| 131 | + t2 = default_timer() |
| 132 | + |
| 133 | + print("preprocessing finished, time used:", t2 - t1) |
| 134 | + |
| 135 | + # pdb.set_trace() |
| 136 | + model = KernelGKN(width, ker_width, depth, edge_features, node_features).cuda() |
| 137 | + |
| 138 | + init_weights(model, init_type="orthogonal", init_gain=init_gain) |
| 139 | + |
| 140 | + optimizer = torch.optim.Adam( |
| 141 | + model.parameters(), lr=learning_rate, weight_decay=5e-4 |
| 142 | + ) |
| 143 | + scheduler = torch.optim.lr_scheduler.StepLR( |
| 144 | + optimizer, step_size=scheduler_step, gamma=scheduler_gamma |
| 145 | + ) |
| 146 | + |
| 147 | + myloss = LpLoss(size_average=False) |
| 148 | + u_normalizer.to(device) |
| 149 | + model.train() |
| 150 | + for ep in range(epochs): |
| 151 | + t1 = default_timer() |
| 152 | + train_mse = 0.0 |
| 153 | + train_l2 = 0.0 |
| 154 | + for batch in train_loader: |
| 155 | + batch = batch.to(device) |
| 156 | + optimizer.zero_grad() |
| 157 | + |
| 158 | + out = model(batch) |
| 159 | + mse = F.mse_loss(out.view(-1, 1), batch.y.view(-1, 1)) |
| 160 | + |
| 161 | + l2 = myloss( |
| 162 | + u_normalizer.decode(out.view(batch_size, -1),), |
| 163 | + u_normalizer.decode(batch.y.view(batch_size, -1),), |
| 164 | + ) |
| 165 | + l2.backward() |
| 166 | + |
| 167 | + optimizer.step() |
| 168 | + train_mse += mse.item() |
| 169 | + train_l2 += l2.item() |
| 170 | + |
| 171 | + scheduler.step() |
| 172 | + t2 = default_timer() |
| 173 | + ttime_epoch = t2 - t1 |
| 174 | + ttrain = train_l2 / (ntrain * k) |
| 175 | + |
| 176 | + print(ep, t2 - t1, train_mse / len(train_loader), train_l2 / (ntrain * k)) |
| 177 | + |
| 178 | + runtime[0] = t2 - t1 |
| 179 | + t1 = default_timer() |
| 180 | + model.eval() |
| 181 | + test_l2 = 0.0 |
| 182 | + with torch.no_grad(): |
| 183 | + for batch in test_loader: |
| 184 | + batch = batch.to(device) |
| 185 | + out = model(batch) |
| 186 | + out = u_normalizer.decode(out.view(batch_size2, -1),) |
| 187 | + test_l2 += myloss(out, batch.y.view(batch_size2, -1)).item() |
| 188 | + |
| 189 | + ttest = test_l2 / ntest |
| 190 | + t2 = default_timer() |
| 191 | + print(ep, t2 - t1, test_l2 / ntest) |
| 192 | + |
| 193 | + runtime[1] = t2 - t1 |
| 194 | + model_total_params = sum(p.numel() for p in model.parameters()) |
| 195 | + model_trainable_params = sum( |
| 196 | + p.numel() for p in model.parameters() if p.requires_grad |
| 197 | + ) |
0 commit comments