-
Notifications
You must be signed in to change notification settings - Fork 280
/
Copy pathinference.py
745 lines (666 loc) · 25.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import argparse
import os
import random
from datetime import datetime
from pathlib import Path
from diffusers.utils import logging
from typing import Optional, List, Union
import imageio
import numpy as np
import torch
from PIL import Image
from transformers import (
T5EncoderModel,
T5Tokenizer,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
)
from ltx_video.models.autoencoders.causal_video_autoencoder import (
CausalVideoAutoencoder,
)
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXVideoPipeline
from ltx_video.schedulers.rf import RectifiedFlowScheduler
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
MAX_HEIGHT = 720
MAX_WIDTH = 1280
MAX_NUM_FRAMES = 257
logger = logging.get_logger("LTX-Video")
def get_total_gpu_memory():
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
return total_memory
return 0
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
return "cpu"
def load_image_to_tensor_with_resize_and_crop(
image_input: Union[str, Image.Image],
target_height: int = 512,
target_width: int = 768,
) -> torch.Tensor:
"""Load and process an image into a tensor.
Args:
image_input: Either a file path (str) or a PIL Image object
target_height: Desired height of output tensor
target_width: Desired width of output tensor
"""
if isinstance(image_input, str):
image = Image.open(image_input).convert("RGB")
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("image_input must be either a file path or a PIL Image object")
input_width, input_height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = input_width / input_height
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(input_height * aspect_ratio_target)
new_height = input_height
x_start = (input_width - new_width) // 2
y_start = 0
else:
new_width = input_width
new_height = int(input_width / aspect_ratio_target)
x_start = 0
y_start = (input_height - new_height) // 2
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
image = image.resize((target_width, target_height))
frame_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2)
def calculate_padding(
source_height: int, source_width: int, target_height: int, target_width: int
) -> tuple[int, int, int, int]:
# Calculate total padding needed
pad_height = target_height - source_height
pad_width = target_width - source_width
# Calculate padding for each side
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top # Handles odd padding
pad_left = pad_width // 2
pad_right = pad_width - pad_left # Handles odd padding
# Return padded tensor
# Padding format is (left, right, top, bottom)
padding = (pad_left, pad_right, pad_top, pad_bottom)
return padding
def convert_prompt_to_filename(text: str, max_len: int = 20) -> str:
# Remove non-letters and convert to lowercase
clean_text = "".join(
char.lower() for char in text if char.isalpha() or char.isspace()
)
# Split into words
words = clean_text.split()
# Build result string keeping track of length
result = []
current_length = 0
for word in words:
# Add word length plus 1 for underscore (except for first word)
new_length = current_length + len(word)
if new_length <= max_len:
result.append(word)
current_length += len(word)
else:
break
return "-".join(result)
# Generate output video name
def get_unique_filename(
base: str,
ext: str,
prompt: str,
seed: int,
resolution: tuple[int, int, int],
dir: Path,
endswith=None,
index_range=1000,
) -> Path:
base_filename = f"{base}_{convert_prompt_to_filename(prompt, max_len=30)}_{seed}_{resolution[0]}x{resolution[1]}x{resolution[2]}"
for i in range(index_range):
filename = dir / f"{base_filename}_{i}{endswith if endswith else ''}{ext}"
if not os.path.exists(filename):
return filename
raise FileExistsError(
f"Could not find a unique filename after {index_range} attempts."
)
def seed_everething(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
if torch.backends.mps.is_available():
torch.mps.manual_seed(seed)
def main():
parser = argparse.ArgumentParser(
description="Load models from separate directories and run the pipeline."
)
# Directories
parser.add_argument(
"--ckpt_path",
type=str,
required=True,
help="Path to a safetensors file that contains all model parts.",
)
parser.add_argument(
"--output_path",
type=str,
default=None,
help="Path to the folder to save output video, if None will save in outputs/ directory.",
)
parser.add_argument("--seed", type=int, default="171198")
# Pipeline parameters
parser.add_argument(
"--num_inference_steps", type=int, default=40, help="Number of inference steps"
)
parser.add_argument(
"--num_images_per_prompt",
type=int,
default=1,
help="Number of images per prompt",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=3,
help="Guidance scale.",
)
parser.add_argument(
"--stg_scale",
type=float,
default=1,
help="Spatiotemporal guidance scale. 0 to disable STG.",
)
parser.add_argument(
"--stg_rescale",
type=float,
default=0.7,
help="Spatiotemporal guidance rescaling scale. 1 to disable rescale.",
)
parser.add_argument(
"--stg_mode",
type=str,
default="attention_values",
help="Spatiotemporal guidance mode. "
"It can be one of 'attention_values' (default), 'attension_skip', 'residual', or 'transformer_block'.",
)
parser.add_argument(
"--stg_skip_layers",
type=str,
default="19",
help="Layers to block for spatiotemporal guidance. Comma separated list of integers.",
)
parser.add_argument(
"--image_cond_noise_scale",
type=float,
default=0.15,
help="Amount of noise to add to the conditioned image",
)
parser.add_argument(
"--height",
type=int,
default=480,
help="Height of the output video frames. Optional if an input image provided.",
)
parser.add_argument(
"--width",
type=int,
default=704,
help="Width of the output video frames. If None will infer from input image.",
)
parser.add_argument(
"--num_frames",
type=int,
default=121,
help="Number of frames to generate in the output video",
)
parser.add_argument(
"--frame_rate", type=int, default=25, help="Frame rate for the output video"
)
parser.add_argument(
"--device",
default=None,
help="Device to run inference on. If not specified, will automatically detect and use CUDA or MPS if available, else CPU.",
)
parser.add_argument(
"--precision",
choices=["bfloat16", "mixed_precision"],
default="bfloat16",
help="Sets the precision for the transformer and tokenizer. Default is bfloat16. If 'mixed_precision' is enabled, it moves to mixed-precision.",
)
# VAE noise augmentation
parser.add_argument(
"--decode_timestep",
type=float,
default=0.025,
help="Timestep for decoding noise",
)
parser.add_argument(
"--decode_noise_scale",
type=float,
default=0.0125,
help="Noise level for decoding noise",
)
# Prompts
parser.add_argument(
"--prompt",
type=str,
help="Text prompt to guide generation",
)
parser.add_argument(
"--negative_prompt",
type=str,
default="worst quality, inconsistent motion, blurry, jittery, distorted",
help="Negative prompt for undesired features",
)
parser.add_argument(
"--offload_to_cpu",
action="store_true",
help="Offloading unnecessary computations to CPU.",
)
parser.add_argument(
"--text_encoder_model_name_or_path",
type=str,
default="PixArt-alpha/PixArt-XL-2-1024-MS",
help="Local path or model identifier for both the tokenizer and text encoder. Defaults to pretrained model on Hugging Face.",
)
# Conditioning arguments
parser.add_argument(
"--conditioning_media_paths",
type=str,
nargs="*",
help="List of paths to conditioning media (images or videos). Each path will be used as a conditioning item.",
)
parser.add_argument(
"--conditioning_strengths",
type=float,
nargs="*",
help="List of conditioning strengths (between 0 and 1) for each conditioning item. Must match the number of conditioning items.",
)
parser.add_argument(
"--conditioning_start_frames",
type=int,
nargs="*",
help="List of frame indices where each conditioning item should be applied. Must match the number of conditioning items.",
)
parser.add_argument(
"--sampler",
type=str,
choices=["uniform", "linear-quadratic"],
default=None,
help="Sampler to use for noise scheduling. Can be either 'uniform' or 'linear-quadratic'. If not specified, uses the sampler from the checkpoint.",
)
# Prompt enhancement
parser.add_argument(
"--prompt_enhancement_words_threshold",
type=int,
default=50,
help="Enable prompt enhancement only if input prompt has fewer words than this threshold. Set to 0 to disable enhancement completely.",
)
parser.add_argument(
"--prompt_enhancer_image_caption_model_name_or_path",
type=str,
default="MiaoshouAI/Florence-2-large-PromptGen-v2.0",
help="Path to the image caption model",
)
parser.add_argument(
"--prompt_enhancer_llm_model_name_or_path",
type=str,
default="unsloth/Llama-3.2-3B-Instruct",
help="Path to the LLM model, default is Llama-3.2-3B-Instruct, but you can use other models like Llama-3.1-8B-Instruct, or other models supported by Hugging Face",
)
args = parser.parse_args()
logger.warning(f"Running generation with arguments: {args}")
infer(**vars(args))
def create_ltx_video_pipeline(
ckpt_path: str,
precision: str,
text_encoder_model_name_or_path: str,
sampler: Optional[str] = None,
device: Optional[str] = None,
enhance_prompt: bool = False,
prompt_enhancer_image_caption_model_name_or_path: Optional[str] = None,
prompt_enhancer_llm_model_name_or_path: Optional[str] = None,
) -> LTXVideoPipeline:
ckpt_path = Path(ckpt_path)
assert os.path.exists(
ckpt_path
), f"Ckpt path provided (--ckpt_path) {ckpt_path} does not exist"
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
transformer = Transformer3DModel.from_pretrained(ckpt_path)
# Use constructor if sampler is specified, otherwise use from_pretrained
if sampler:
scheduler = RectifiedFlowScheduler(
sampler=("Uniform" if sampler.lower() == "uniform" else "LinearQuadratic")
)
else:
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
text_encoder = T5EncoderModel.from_pretrained(
text_encoder_model_name_or_path, subfolder="text_encoder"
)
patchifier = SymmetricPatchifier(patch_size=1)
tokenizer = T5Tokenizer.from_pretrained(
text_encoder_model_name_or_path, subfolder="tokenizer"
)
transformer = transformer.to(device)
vae = vae.to(device)
text_encoder = text_encoder.to(device)
if enhance_prompt:
prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained(
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
)
prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained(
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
)
prompt_enhancer_llm_model = AutoModelForCausalLM.from_pretrained(
prompt_enhancer_llm_model_name_or_path,
torch_dtype="bfloat16",
)
prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained(
prompt_enhancer_llm_model_name_or_path,
)
else:
prompt_enhancer_image_caption_model = None
prompt_enhancer_image_caption_processor = None
prompt_enhancer_llm_model = None
prompt_enhancer_llm_tokenizer = None
vae = vae.to(torch.bfloat16)
if precision == "bfloat16" and transformer.dtype != torch.bfloat16:
transformer = transformer.to(torch.bfloat16)
text_encoder = text_encoder.to(torch.bfloat16)
# Use submodels for the pipeline
submodel_dict = {
"transformer": transformer,
"patchifier": patchifier,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"vae": vae,
"prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
"prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
"prompt_enhancer_llm_model": prompt_enhancer_llm_model,
"prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer,
}
pipeline = LTXVideoPipeline(**submodel_dict)
pipeline = pipeline.to(device)
return pipeline
def infer(
ckpt_path: str,
output_path: Optional[str],
seed: int,
num_inference_steps: int,
num_images_per_prompt: int,
guidance_scale: float,
stg_scale: float,
stg_rescale: float,
stg_mode: str,
stg_skip_layers: str,
image_cond_noise_scale: float,
height: Optional[int],
width: Optional[int],
num_frames: int,
frame_rate: int,
precision: str,
decode_timestep: float,
decode_noise_scale: float,
prompt: str,
negative_prompt: str,
offload_to_cpu: bool,
text_encoder_model_name_or_path: str,
conditioning_media_paths: Optional[List[str]] = None,
conditioning_strengths: Optional[List[float]] = None,
conditioning_start_frames: Optional[List[int]] = None,
sampler: Optional[str] = None,
device: Optional[str] = None,
prompt_enhancement_words_threshold: int = 50,
prompt_enhancer_image_caption_model_name_or_path: str = "MiaoshouAI/Florence-2-large-PromptGen-v2.0",
prompt_enhancer_llm_model_name_or_path: str = "unsloth/Llama-3.2-3B-Instruct",
**kwargs,
):
if kwargs.get("input_image_path", None):
logger.warning(
"Please use conditioning_media_paths instead of input_image_path."
)
assert not conditioning_media_paths and not conditioning_start_frames
conditioning_media_paths = [kwargs["input_image_path"]]
conditioning_start_frames = [0]
# Validate conditioning arguments
if conditioning_media_paths:
# Use default strengths of 1.0
if not conditioning_strengths:
conditioning_strengths = [1.0] * len(conditioning_media_paths)
if not conditioning_start_frames:
raise ValueError(
"If `conditioning_media_paths` is provided, "
"`conditioning_start_frames` must also be provided"
)
if len(conditioning_media_paths) != len(conditioning_strengths) or len(
conditioning_media_paths
) != len(conditioning_start_frames):
raise ValueError(
"`conditioning_media_paths`, `conditioning_strengths`, "
"and `conditioning_start_frames` must have the same length"
)
if any(s < 0 or s > 1 for s in conditioning_strengths):
raise ValueError("All conditioning strengths must be between 0 and 1")
if any(f < 0 or f >= num_frames for f in conditioning_start_frames):
raise ValueError(
f"All conditioning start frames must be between 0 and {num_frames-1}"
)
seed_everething(seed)
if offload_to_cpu and not torch.cuda.is_available():
logger.warning(
"offload_to_cpu is set to True, but offloading will not occur since the model is already running on CPU."
)
offload_to_cpu = False
else:
offload_to_cpu = offload_to_cpu and get_total_gpu_memory() < 30
output_dir = (
Path(output_path)
if output_path
else Path(f"outputs/{datetime.today().strftime('%Y-%m-%d')}")
)
output_dir.mkdir(parents=True, exist_ok=True)
# Adjust dimensions to be divisible by 32 and num_frames to be (N * 8 + 1)
height_padded = ((height - 1) // 32 + 1) * 32
width_padded = ((width - 1) // 32 + 1) * 32
num_frames_padded = ((num_frames - 2) // 8 + 1) * 8 + 1
padding = calculate_padding(height, width, height_padded, width_padded)
logger.warning(
f"Padded dimensions: {height_padded}x{width_padded}x{num_frames_padded}"
)
prompt_word_count = len(prompt.split())
enhance_prompt = (
prompt_enhancement_words_threshold > 0
and prompt_word_count < prompt_enhancement_words_threshold
)
if prompt_enhancement_words_threshold > 0 and not enhance_prompt:
logger.info(
f"Prompt has {prompt_word_count} words, which exceeds the threshold of {prompt_enhancement_words_threshold}. Prompt enhancement disabled."
)
pipeline = create_ltx_video_pipeline(
ckpt_path=ckpt_path,
precision=precision,
text_encoder_model_name_or_path=text_encoder_model_name_or_path,
sampler=sampler,
device=kwargs.get("device", get_device()),
enhance_prompt=enhance_prompt,
prompt_enhancer_image_caption_model_name_or_path=prompt_enhancer_image_caption_model_name_or_path,
prompt_enhancer_llm_model_name_or_path=prompt_enhancer_llm_model_name_or_path,
)
conditioning_items = (
prepare_conditioning(
conditioning_media_paths=conditioning_media_paths,
conditioning_strengths=conditioning_strengths,
conditioning_start_frames=conditioning_start_frames,
height=height,
width=width,
num_frames=num_frames,
padding=padding,
pipeline=pipeline,
)
if conditioning_media_paths
else None
)
# Set spatiotemporal guidance
skip_block_list = [int(x.strip()) for x in stg_skip_layers.split(",")]
if stg_mode.lower() == "stg_av" or stg_mode.lower() == "attention_values":
skip_layer_strategy = SkipLayerStrategy.AttentionValues
elif stg_mode.lower() == "stg_as" or stg_mode.lower() == "attention_skip":
skip_layer_strategy = SkipLayerStrategy.AttentionSkip
elif stg_mode.lower() == "stg_r" or stg_mode.lower() == "residual":
skip_layer_strategy = SkipLayerStrategy.Residual
elif stg_mode.lower() == "stg_t" or stg_mode.lower() == "transformer_block":
skip_layer_strategy = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid spatiotemporal guidance mode: {stg_mode}")
# Prepare input for the pipeline
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
}
device = device or get_device()
generator = torch.Generator(device=device).manual_seed(seed)
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
guidance_scale=guidance_scale,
skip_layer_strategy=skip_layer_strategy,
skip_block_list=skip_block_list,
stg_scale=stg_scale,
do_rescaling=stg_rescale != 1,
rescaling_scale=stg_rescale,
generator=generator,
output_type="pt",
callback_on_step_end=None,
height=height_padded,
width=width_padded,
num_frames=num_frames_padded,
frame_rate=frame_rate,
**sample,
conditioning_items=conditioning_items,
is_video=True,
vae_per_channel_normalize=True,
image_cond_noise_scale=image_cond_noise_scale,
decode_timestep=decode_timestep,
decode_noise_scale=decode_noise_scale,
mixed_precision=(precision == "mixed_precision"),
offload_to_cpu=offload_to_cpu,
device=device,
enhance_prompt=enhance_prompt,
).images
# Crop the padded images to the desired resolution and number of frames
(pad_left, pad_right, pad_top, pad_bottom) = padding
pad_bottom = -pad_bottom
pad_right = -pad_right
if pad_bottom == 0:
pad_bottom = images.shape[3]
if pad_right == 0:
pad_right = images.shape[4]
images = images[:, :, :num_frames, pad_top:pad_bottom, pad_left:pad_right]
for i in range(images.shape[0]):
# Gathering from B, C, F, H, W to C, F, H, W and then permuting to F, H, W, C
video_np = images[i].permute(1, 2, 3, 0).cpu().float().numpy()
# Unnormalizing images to [0, 255] range
video_np = (video_np * 255).astype(np.uint8)
fps = frame_rate
height, width = video_np.shape[1:3]
# In case a single image is generated
if video_np.shape[0] == 1:
output_filename = get_unique_filename(
f"image_output_{i}",
".png",
prompt=prompt,
seed=seed,
resolution=(height, width, num_frames),
dir=output_dir,
)
imageio.imwrite(output_filename, video_np[0])
else:
output_filename = get_unique_filename(
f"video_output_{i}",
".mp4",
prompt=prompt,
seed=seed,
resolution=(height, width, num_frames),
dir=output_dir,
)
# Write video
with imageio.get_writer(output_filename, fps=fps) as video:
for frame in video_np:
video.append_data(frame)
logger.warning(f"Output saved to {output_dir}")
def prepare_conditioning(
conditioning_media_paths: List[str],
conditioning_strengths: List[float],
conditioning_start_frames: List[int],
height: int,
width: int,
num_frames: int,
padding: tuple[int, int, int, int],
pipeline: LTXVideoPipeline,
) -> Optional[List[ConditioningItem]]:
"""Prepare conditioning items based on input media paths and their parameters.
Args:
conditioning_media_paths: List of paths to conditioning media (images or videos)
conditioning_strengths: List of conditioning strengths for each media item
conditioning_start_frames: List of frame indices where each item should be applied
height: Height of the output frames
width: Width of the output frames
num_frames: Number of frames in the output video
padding: Padding to apply to the frames
pipeline: LTXVideoPipeline object used for condition video trimming
Returns:
A list of ConditioningItem objects.
"""
conditioning_items = []
for path, strength, start_frame in zip(
conditioning_media_paths, conditioning_strengths, conditioning_start_frames
):
# Check if the path points to an image or video
is_video = any(
path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]
)
if is_video:
reader = imageio.get_reader(path)
orig_num_input_frames = reader.count_frames()
num_input_frames = pipeline.trim_conditioning_sequence(
start_frame, orig_num_input_frames, num_frames
)
if num_input_frames < orig_num_input_frames:
logger.warning(
f"Trimming conditioning video {path} from {orig_num_input_frames} to {num_input_frames} frames."
)
# Read and preprocess the relevant frames from the video file.
frames = []
for i in range(num_input_frames):
frame = Image.fromarray(reader.get_data(i))
frame_tensor = load_image_to_tensor_with_resize_and_crop(
frame, height, width
)
frame_tensor = torch.nn.functional.pad(frame_tensor, padding)
frames.append(frame_tensor)
reader.close()
# Stack frames along the temporal dimension
video_tensor = torch.cat(frames, dim=2)
conditioning_items.append(
ConditioningItem(video_tensor, start_frame, strength)
)
else: # Input image
frame_tensor = load_image_to_tensor_with_resize_and_crop(
path, height, width
)
frame_tensor = torch.nn.functional.pad(frame_tensor, padding)
conditioning_items.append(
ConditioningItem(frame_tensor, start_frame, strength)
)
return conditioning_items
if __name__ == "__main__":
main()