-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdemo.py
144 lines (109 loc) · 4.84 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
from pprint import pprint
import numpy as np
import torch
from PIL import Image
from torch.autograd import Variable
from torch.utils import data
from argmyparse import add_additional_params_to_args
from argmyparse import get_da_mcd_demo_parser
from datasets import get_dataset
from loss import CrossEntropyLoss2d, get_prob_distance_criterion
from models.model_util import get_multitask_models
from transform import get_img_transform, get_lbl_transform, unnormalize
from util import mkdir_if_not_exist, save_dic_to_json, check_if_done, save_colorized_lbl, get_class_weight_from_file, \
set_debugger_org_frc
# set_debugger_org_frc()
parser = get_da_mcd_demo_parser()
args = parser.parse_args()
args = add_additional_params_to_args(args)
print("=> loading checkpoint '{}'".format(args.trained_checkpoint))
if not os.path.exists(args.trained_checkpoint):
raise OSError("%s does not exist!" % args.trained_checkpoint)
# checkpoint = torch.load(args.trained_checkpoint)
checkpoint = torch.load(args.trained_checkpoint, map_location=lambda storage, loc: storage) # for CPU
train_args = checkpoint["args"]
args.start_epoch = checkpoint['epoch']
print("----- train args ------")
pprint(checkpoint["args"].__dict__, indent=4)
print("-" * 50)
print("=> loaded checkpoint '{}'".format(args.trained_checkpoint))
base_outdir = os.path.join(args.outdir)
mkdir_if_not_exist(base_outdir)
json_fn = os.path.join(base_outdir, "param.json")
# check_if_done(json_fn)
args.machine = os.uname()[1]
save_dic_to_json(args.__dict__, json_fn)
train_img_shape = tuple([int(x) for x in train_args.train_img_shape])
test_img_shape = tuple([int(x) for x in args.test_img_shape])
if "normalize_way" in train_args.__dict__.keys():
img_transform = get_img_transform(img_shape=train_img_shape,
normalize_way=train_args.normalize_way)
else:
img_transform = get_img_transform(img_shape=train_img_shape)
if "background_id" in train_args.__dict__.keys():
label_transform = get_lbl_transform(img_shape=train_img_shape, n_class=train_args.n_class,
background_id=train_args.background_id)
else:
label_transform = get_lbl_transform(img_shape=train_img_shape, n_class=train_args.n_class)
# tgt_dataset = get_dataset(dataset_name=args.tgt_dataset, split=args.split, img_transform=img_transform,
# label_transform=label_transform, test=True, input_ch=train_args.input_ch)
# target_loader = data.DataLoader(tgt_dataset, batch_size=1, pin_memory=True)
weight = get_class_weight_from_file(n_class=train_args.n_class, weight_filename=train_args.loss_weights_file,
add_bg_loss=train_args.add_bg_loss)
if torch.cuda.is_available():
weight = weight.cuda()
criterion = CrossEntropyLoss2d(weight)
criterion_d = get_prob_distance_criterion(train_args.d_loss)
model_enc, model_dec = get_multitask_models(net_name=train_args.net, input_ch=train_args.input_ch,
n_class=train_args.n_class, is_data_parallel=train_args.is_data_parallel,
semseg_criterion=criterion, discrepancy_criterion=criterion_d)
model_enc.load_state_dict(checkpoint['enc_state_dict'])
model_dec.load_state_dict(checkpoint['dec_state_dict'])
print(model_dec.get_task_weights())
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.trained_checkpoint, checkpoint['epoch']))
model_enc.eval()
model_dec.eval()
## handmade
img = Image.open(args.img_fn).convert('RGB')
imgs = img_transform(img)
imgs = imgs.unsqueeze(0)
print("origin:")
print(imgs.size())
# imgs = tgt_dataset.__getitem__(0)[0]
# imgs = imgs.unsqueeze(0)
# print("dataset:")
# print(imgs.size())
imgs = Variable(imgs)
if torch.cuda.is_available():
model_enc.cuda()
model_dec.cuda()
imgs = imgs.cuda()
rgb = imgs[:, :3, :, :]
feature = model_enc(rgb)
pred_semseg1, pred_semseg2, pred_depth = model_dec(feature)
# if args.use_f2:
# outputs += F2(feature)
# outputs /= 2
# Save predicted pixel labels(pngs)
if train_args.add_bg_loss:
pred = pred_semseg1[0, :args.n_class].data.max(0)[1].cpu()
else:
pred = pred_semseg1[0, :args.n_class - 1].data.max(0)[1].cpu()
indir, infn = os.path.split(args.img_fn)
img = Image.fromarray(np.uint8(pred.numpy()))
img = img.resize(test_img_shape, Image.NEAREST)
label_fn = os.path.join(base_outdir, "label_" + infn)
img.save(label_fn)
# Save visualized predicted pixel labels(pngs)
vis_fn = os.path.join(base_outdir, "vis_" + infn)
save_colorized_lbl(img, vis_fn, args.tgt_dataset)
# Save Predicted Depth Image
depth_fn = os.path.join(base_outdir, "depth_" + infn)
depth_im = pred_depth.data.cpu().numpy()[0]
depth_im = depth_im.transpose([1, 2, 0])
depth_im = unnormalize(depth_im)
depth_im = depth_im.resize(test_img_shape, Image.BILINEAR)
depth_im.save(depth_fn)
print("Finished! Result Dir: " + base_outdir)