Install the CLI via the Python package manager pip
>> $ pip install lucidtech-las-cli
List models that are available for predictions
>> $ las models list
{
"models": [
{
"modelId": "las:model:<hex>",
...
}
],
"nextToken": null
}
Upload a document
>> $ las documents create invoice.pdf
{
"documentId": "las:document:<hex>",
"contentType": "application/pdf"
}
Run inference on the document using a model
>> $ las predictions create las:document:<hex> las:model:<hex>
{
"documentId": "las:document:<hex>",
"predictions": [
...
]
}
When uploading data that will be used for training and evaluation, we need to provide a ground truth.
We can then use the optional parameters --ground-truth-path
or --ground-truth-fields
.
>> $ las documents create invoice.pdf --ground-truth-path ground_truth.json
{
"documentId": "las:document:<hex>",
"contentType": "application/pdf"
"groundTruth": [
...
]
}
In this case the ground_truth.json
should be on the following format
{
"total_amount": "299.00",
"due_date": "2020-03-20"
}
If for instance a prediction reveals incorrect values in the ground truth of a document, we can update the existing document with new ground truth values.
>> $ las documents update las:document:<hex> --ground-truth-fields total_amount=300.00 due_date=2020-02-28
{
"documentId": "las:document:<hex>",
"groundTruth": [
...
]
}
{% hint style="info" %} Consent ID is an identifier you can assign to documents to keep track of document ownership for your customers. {% endhint %}
>> $ las documents create invoice.pdf --consent-id las:consent:<hex>
{
"documentId": "las:document:<hex>",
"contentType": "application/pdf",
"consentId": "las:consent:<hex>"
}
>> $ las documents create invoice.pdf --consent-id las:consent:<hex>
{
"documentId": "las:document:<hex>",
"contentType": "application/pdf",
"consentId": "las:consent:<hex>"
}
>> $ las documents get las:document:<hex> --download-content invoice2.pdf
{
"documentId": "las:document:<hex>",
"contentType": "application/pdf",
"consentId": "las:consent:<hex>",
"content": "XXXXXXXXX... [TRUNCATED]"
}
Suppose we wish to delete all documents associated with a customer in our ERP database or other systems. We need to provide a consent_id to the prediction method that uniquely identifies the customer and use that consent_id to delete documents.
>> $ las consents delete las:consent:<hex>
{
"consentId": "las:consent:<hex>",
"documentIds": [
...
]
}
Creating a batch is a way to group documents. This is useful for specifying batches of documents to use in improving the model later.
>> $ las batches create
{
"batchId": "las:batch:<hex>",
...
}