forked from ludles/OralScreen
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
310 lines (260 loc) · 10.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# -*- coding: utf-8 -*-
from glob import glob
import cv2, random, os, csv
import numpy as np
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.layers import Dense, Dropout#, AveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras import regularizers
import itertools
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score, f1_score
L2_WEIGHT_DECAY = 1e-4
# %%
def load_set(subset_dir, size_in, size_out, is_per_slide=False):
def random_crop(img, size):
width, height = size
assert img.shape[0] >= height
assert img.shape[1] >= width
x = random.randint(0, img.shape[1] - width)
y = random.randint(0, img.shape[0] - height)
img = img[y:y+height, x:x+width]
return img
def read_sample(img_path):
if size_out[-1] == 1:
img = cv2.imread(img_path, 0)
else:
img = cv2.imread(img_path)
if img.shape[:2] != size_in[:2]:
img = cv2.resize(img, size_in[:2])
if img.ndim == 2:
img = np.expand_dims(img, axis=-1)
img = random_crop(img, size_out[:2])
return img
cancer = np.array([read_sample(path) for path in glob(subset_dir + 'Cancer/*')])
healthy = np.array([read_sample(path) for path in glob(subset_dir + 'Healthy/*')])
X = np.concatenate((cancer, healthy), axis=0)
Y = np.concatenate((np.zeros((len(cancer), 1)), np.ones((len(healthy), 1))), axis=0)
Y = to_categorical(Y)
if is_per_slide:
dir_cancer = subset_dir + 'Cancer/'
dir_healthy = subset_dir + 'Healthy/'
slides_test0 = list(set([os.path.basename(patch_path)[:2] for patch_path in glob(dir_cancer + '*.jpg')]))
slides_test1 = list(set([os.path.basename(patch_path)[:2] for patch_path in glob(dir_healthy + '*.jpg')]))
slides_test = slides_test0 + slides_test1
sizes0 = [len(glob(dir_cancer + i_slide + '*.jpg')) for i_slide in slides_test0]
sizes1 = [len(glob(dir_healthy + i_slide + '*.jpg')) for i_slide in slides_test1]
sizes = sizes0 + sizes1
indices = [i for i in range(sum(sizes))]
index_slide = {slides_test[i]:indices[sum(sizes[:i]):sum(sizes[:i+1])] for i in range(len(slides_test))}
np.random.shuffle(indices)
X = X[indices]
Y = Y[indices]
return X, Y, indices, index_slide, slides_test0, slides_test1
else:
# shuffle set
index = [i for i in range(len(X))]
np.random.shuffle(index)
X = X[index]
Y = Y[index]
return X, Y
# %% Non-interpolation augmentation
def aug_non_inter(img):
def ori(img):
return img
def fliph(img):
return np.fliplr(img)
def flipv(img):
return np.flipud(img)
def fliphv(img):
return np.fliplr(np.flipud(img))
def ori90(img):
return np.rot90(img)
def fliph90(img):
return np.rot90(np.fliplr(img))
def flipv90(img):
return np.rot90(np.flipud(img))
def fliphv90(img):
return np.rot90(np.fliplr(np.flipud(img)))
aug_functions = [ori, fliph, fliphv, fliphv, ori90, fliph90, fliphv90, fliphv90]
return random.choice(aug_functions)(img)
# %% Create model
def build_resnet(input_shape, classes, pretrain):
from tensorflow.keras.applications import resnet50
# Get base model
if pretrain == 1:
base_model = resnet50.ResNet50(
include_top=False,
weights='imagenet',
input_tensor=None,
input_shape=input_shape,
pooling='avg',
classes=classes)
else:
base_model = resnet50.ResNet50(
include_top=False,
weights=None,
input_tensor=None,
input_shape=input_shape,
pooling='avg',
classes=classes)
# Add final layers
X = base_model.output
# X = AveragePooling2D(pool_size=(2, 2), name = "avg_pool")(X)
# X = Flatten()(X)
X = Dropout(0.5)(X)
predictions = Dense(
classes,
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
activation='softmax',
name='fc')(X)
# This is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
return model
def build_densenet(input_shape, classes, pretrain):
from tensorflow.keras.applications import densenet
# Get base model
if pretrain == 1:
base_model = densenet.DenseNet201(
include_top=False,
weights='imagenet',
input_tensor=None,
input_shape=input_shape,
pooling='avg',
classes=classes)
else:
base_model = densenet.DenseNet201(
include_top=False,
weights=None,
input_tensor=None,
input_shape=input_shape,
pooling='avg',
classes=classes)
# Add final layers
X = base_model.output
# X = AveragePooling2D(pool_size=(2, 2), name = "avg_pool")(X)
# X = Flatten()(X)
X = Dropout(0.5)(X)
predictions = Dense(
classes,
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
activation='softmax',
name='fc')(X)
# This is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
return model
#%% Confusion matrix plot
def plot_confusion_matrix(cm, classes,
normalize=True,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
def accuracy_curve(h, log_dir):
acc, loss, val_acc, val_loss = h.history['acc'], h.history['loss'], h.history['val_acc'], h.history['val_loss']
epoch = len(acc)
plt.figure(figsize=(17, 5))
plt.subplot(121)
plt.plot(range(epoch), acc, label='Train')
plt.plot(range(epoch), val_acc, label='Validation')
plt.title('Accuracy over ' + str(epoch) + ' Epochs', size=15)
plt.legend()
plt.grid(True)
plt.subplot(122)
plt.plot(range(epoch), loss, label='Train')
plt.plot(range(epoch), val_loss, label='Validation')
plt.title('Loss over ' + str(epoch) + ' Epochs', size=15)
plt.legend()
plt.grid(True)
# plt.show()
plt.savefig(log_dir + 'learning_curve_DenseNet.png', bbox_inches='tight', transparent=False)
def evaluate(y_test, y_pred, target_names):
y_true = np.argmax(y_test, axis=1)
accu = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, pos_label=0, average='binary')
recall = recall_score(y_true, y_pred, pos_label=0, average='binary')
f1 = f1_score(y_true, y_pred, pos_label=0, average='binary')
cm = confusion_matrix(y_true, y_pred)
report = classification_report(y_true, y_pred, target_names=target_names, digits=5)
return {'accuracy':accu, 'precision':precision, 'recall':recall, 'f1':f1, 'cm':cm, 'report':report}
def write_results(metrics, args):
'''
args.architecture
args.pretrain
args.dataset
args.fold
args.index
'''
# log dir
dir_res = f"./results/dataset_{args.dataset}/"
if not os.path.exists(dir_res):
os.makedirs(dir_res)
csv_name = f"{args.architecture}_pre{args.pretrain}.csv"
# Write results into .csv file for table
header = ['fold', 'i_model', 'accuracy', 'precision', 'recall', 'f1', 'TP', 'FP', 'FN', 'TN', 'report']
if not os.path.exists(dir_res + csv_name):
with open(dir_res + csv_name, 'a+', newline='') as f:
writer = csv.writer(f)
writer.writerow(header)
with open(dir_res + csv_name, 'a+', newline='') as f:
writer = csv.writer(f)
writer.writerow([args.fold, args.index,
metrics['accuracy'],
metrics['precision'],
metrics['recall'],
metrics['f1'],
metrics['cm'][0][0],
metrics['cm'][1][0],
metrics['cm'][0][1],
metrics['cm'][1][1],
metrics['report']
])
def write_per_slide_results(y_test, y_pred, metrics, args, indices, index_slide, slides_test0, slides_test1):
# log dir
dir_res = f"./results/per_slide/{args.architecture}_pre{args.pretrain}/"
if not os.path.exists(dir_res):
os.makedirs(dir_res)
csv_name = f"dataset_{args.dataset}.csv"
# Write results into .csv file for further calculating
header = ['fold', 'i_model', 'i_slide', 'slide_class', 'slide_accuracy', 'perc_cancer']
if not os.path.exists(dir_res + csv_name):
with open(dir_res + csv_name, 'a+', newline='') as f:
writer = csv.writer(f)
writer.writerow(header)
y_true = np.argmax(y_test, axis=1)
slides_test = slides_test0 + slides_test1
for i_slide in slides_test:
indices_slide = [indices.index(i) for i in index_slide[i_slide]]
Y_true_slide = y_true[indices_slide]
Y_pred_slide = y_pred[indices_slide]
acc_slide = accuracy_score(Y_true_slide, Y_pred_slide)
if i_slide in slides_test0:
slide_class = 'Cancer'
perc_cancer = acc_slide
elif i_slide in slides_test1:
slide_class = 'Healthy'
perc_cancer = 1 - acc_slide
with open(dir_res + csv_name, 'a+', newline='') as f:
writer = csv.writer(f)
writer.writerow([args.fold, args.index, i_slide, slide_class, acc_slide, perc_cancer])