-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmake_plot_lowerdim.py
37 lines (35 loc) · 1.14 KB
/
make_plot_lowerdim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from gpflow.kernels import SquaredExponential
from algorithms import GPonRealSpace, RandomForest
from data.train_test_split import PositionSplitter, RandomSplitter
from util.mlflow.constants import (
ESM,
EVE,
LINEAR,
MSE,
ONE_HOT,
SPEARMAN_RHO,
TRANSFORMER,
)
from visualization.plot_lowerdim import plot_lower_dim_results
if __name__ == "__main__":
datasets = ["1FQG", "UBQT", "CALM"]
algos = [
GPonRealSpace().get_name(),
GPonRealSpace(kernel_factory=lambda: SquaredExponential()).get_name(),
RandomForest().get_name(),
] #
metrics = [MSE, SPEARMAN_RHO]
representations = [TRANSFORMER, ESM, ONE_HOT, EVE]
dimensions = [2, 10, 100, 1000, None]
dim_reduction = LINEAR # LINEAR, NON_LINEAR
cv_types = [RandomSplitter(datasets[0]), PositionSplitter(datasets[0])]
for dataset in datasets:
plot_lower_dim_results(
datasets=[dataset],
algorithms=algos,
representations=representations,
cv_types=cv_types,
dimensions=dimensions,
metrics=metrics,
dim_reduction=dim_reduction,
)