-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmake_plot_optimization.py
279 lines (266 loc) · 9.87 KB
/
make_plot_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import pickle
from typing import List, Tuple
import numpy as np
from gpflow.kernels import Matern52
from gpflow.kernels.linears import Linear
from algorithms.gp_on_real_space import GPonRealSpace
from algorithms.uncertain_rf import UncertainRandomForest
from data.load_dataset import load_dataset
from util.mlflow.constants import (
AT_RANDOM,
ESM,
EVE,
EVE_DENSITY,
OBSERVED_Y,
ONE_HOT,
STD_Y,
TRANSFORMER,
)
from util.mlflow.convenience_functions import get_mlflow_results_optimization
from visualization.plot_metric_for_dataset import plot_optimization_task
from visualization.plot_metric_for_uncertainties import plot_uncertainty_optimization
# TODO: refactor into util/postprocessing
def compute_metrics_optimization_results(
results: dict, datasets: list, algos: list, representations: list, seeds: list
) -> Tuple[dict, dict, dict, dict]:
minObs_dict = {}
regret_dict = {}
meanObs_dict = {}
lastObs_dict = {}
for dataset in datasets:
algo_minObs = {}
algo_regret = {}
algo_meanObs = {}
algo_lastObs = {}
for a in algos:
reps_minObs = {}
reps_regret = {}
reps_meanObs = {}
reps_lastObs = {}
if a == "GPsquared_exponential":
a = "GPsqexp"
for rep in representations:
seed_minObs = []
seed_regret = []
seed_meanObs = []
seed_lastObs = []
for seed in seeds:
_results = results[seed][dataset][a][rep][None][OBSERVED_Y]
min_observed = [
min(_results[:i]) for i in range(1, len(_results) + 1)
]
seed_minObs.append(min_observed)
mean_observed = [
np.mean(_results[:i]) for i in range(1, len(_results) + 1)
]
seed_meanObs.append(mean_observed)
last_observed = [_results[i] for i in range(0, len(_results) - 1)]
seed_lastObs.append(last_observed)
_, Y = load_dataset(
dataset, representation=ONE_HOT
) # observations irrespective of representation
regret = [
np.sum(_results[:i]) - np.min(Y)
for i in range(1, len(_results) + 1)
]
seed_regret.append(regret)
reps_minObs[rep] = seed_minObs
reps_regret[rep] = seed_regret
reps_meanObs[rep] = seed_meanObs
reps_lastObs[rep] = seed_lastObs
algo_minObs[a] = reps_minObs
algo_regret[a] = reps_regret
algo_meanObs[a] = reps_meanObs
algo_lastObs[a] = reps_lastObs
minObs_dict[dataset] = algo_minObs
regret_dict[dataset] = algo_regret
meanObs_dict[dataset] = algo_meanObs
lastObs_dict[dataset] = algo_lastObs
return minObs_dict, regret_dict, meanObs_dict, lastObs_dict
def plot_optimization_results(
datasets: List[str],
algos: List[str],
representations: List[str],
seeds: List[int],
reference_benchmark_rep: List[str],
plot_calibration: bool = False,
cached_results: bool = False,
savefig=True,
) -> None:
for representation in representations:
cache_filename = f"/Users/rcml/protein_regression/results/cache/results_optimization_d={'_'.join(datasets)}_a={'_'.join(algos)}_r={representation}.pkl"
cache_filename_ref = f"/Users/rcml/protein_regression/results/cache/results_optimization_d={'_'.join(datasets)}_a={reference_benchmark_rep}_r={representation}.pkl"
cache_filename_rand = f"/Users/rcml/protein_regression/results/cache/results_optimization_d={'_'.join(datasets)}_a={AT_RANDOM}_r={representation}.pkl"
# ALL ALGO RESULTS:
if cached_results and os.path.exists(cache_filename):
with open(cache_filename, "rb") as infile:
results = pickle.load(infile)
else:
results = get_mlflow_results_optimization(
datasets=datasets,
algos=algos,
reps=[representation],
metrics=[OBSERVED_Y, STD_Y],
seeds=seeds,
)
with open(cache_filename, "wb") as outfile:
pickle.dump(results, outfile)
# COMPARATIVE REFERENCE RESULTS
if cached_results and os.path.exists(cache_filename_ref):
with open(cache_filename_ref, "rb") as infile:
reference_results = pickle.load(infile)
else:
reference_results = get_mlflow_results_optimization(
datasets=datasets,
algos=reference_benchmark_rep,
reps=[None],
metrics=[OBSERVED_Y],
)
with open(cache_filename_ref, "wb") as outfile:
pickle.dump(reference_results, outfile)
# RANDOM REFERENCE:
if cached_results and os.path.exists(cache_filename_rand):
with open(cache_filename_rand, "rb") as infile:
random_reference_results = pickle.load(infile)
else:
random_reference_results = get_mlflow_results_optimization(
datasets=datasets,
algos=[AT_RANDOM],
reps=[None],
metrics=[OBSERVED_Y],
seeds=seeds,
)
with open(cache_filename_rand, "wb") as outfile:
pickle.dump(random_reference_results, outfile)
minObs_dict, regret_dict, meanObs_dict, lastObs_dict = (
compute_metrics_optimization_results(
results=results,
datasets=datasets,
algos=algos,
representations=[representation],
seeds=seeds,
)
)
ref_minObs_dict, ref_regret_dict, ref_meanObs_dict, ref_lastObs_dict = (
compute_metrics_optimization_results(
results=reference_results,
datasets=datasets,
algos=reference_benchmark_rep,
representations=[None],
seeds=[None],
)
)
(
random_minObs_dict,
random_regret_dict,
random_meanObs_dict,
random_lastObs_dict,
) = compute_metrics_optimization_results(
results=random_reference_results,
datasets=datasets,
algos=[AT_RANDOM],
representations=[None],
seeds=seeds,
)
# add reference to results # eve-score baseline
for benchmark in reference_benchmark_rep:
minObs_dict[datasets[0]][benchmark] = ref_minObs_dict[datasets[0]].get(
benchmark
)
regret_dict[datasets[0]][benchmark] = ref_regret_dict[datasets[0]].get(
benchmark
)
meanObs_dict[datasets[0]][benchmark] = ref_meanObs_dict[datasets[0]].get(
benchmark
)
lastObs_dict[datasets[0]][benchmark] = ref_lastObs_dict[datasets[0]].get(
benchmark
)
# random baseline
minObs_dict[datasets[0]][AT_RANDOM] = random_minObs_dict[datasets[0]].get(
AT_RANDOM
)
regret_dict[datasets[0]][AT_RANDOM] = random_regret_dict[datasets[0]].get(
AT_RANDOM
)
meanObs_dict[datasets[0]][AT_RANDOM] = random_meanObs_dict[datasets[0]].get(
AT_RANDOM
)
lastObs_dict[datasets[0]][AT_RANDOM] = random_lastObs_dict[datasets[0]].get(
AT_RANDOM
)
plot_optimization_task(
metric_values=minObs_dict,
name=f"Best_observed",
representation=representation,
dataset=datasets,
savefig=savefig,
)
plot_optimization_task(
metric_values=regret_dict,
name=f"Regret",
representation=representation,
dataset=datasets,
legend=True,
savefig=savefig,
)
plot_optimization_task(
metric_values=meanObs_dict,
name=f"Mean_observed",
representation=representation,
dataset=datasets,
savefig=savefig,
)
plot_optimization_task(
metric_values=lastObs_dict,
name=f"Last_observed",
representation=representation,
dataset=datasets,
legend=True,
savefig=savefig,
)
if plot_calibration:
plot_uncertainty_optimization(
dataset=datasets[0],
algos=algos,
rep=representation,
seeds=seeds,
number_quantiles=10,
stepsize=2,
min_obs_metrics=minObs_dict,
regret_metrics=regret_dict,
)
if __name__ == "__main__":
# gathers all our results and saves them into a numpy array
datasets = ["1FQG", "UBQT"]
representations = [TRANSFORMER, ESM, ONE_HOT, EVE]
plot_calibration = False
seeds = [
11,
42,
123,
54,
2345,
987,
6538,
78543,
3465,
43245,
] # 11, 42, 123, 54, 2345, 987, 6538, 78543, 3465, 43245
reference_benchmark_rep = [EVE_DENSITY] # option: VAE_DENSITY
algos = [
GPonRealSpace(kernel_factory=lambda: Matern52()).get_name(),
GPonRealSpace(kernel_factory=lambda: Linear()).get_name(),
UncertainRandomForest().get_name(),
]
for dataset in datasets:
plot_optimization_results(
[dataset],
algos,
representations,
seeds,
reference_benchmark_rep,
plot_calibration=plot_calibration,
cached_results=True,
) # TODO: UBQT rep: EVE missing!