forked from facebookresearch/BenchMARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_vmas.py
214 lines (202 loc) · 6.7 KB
/
test_vmas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import pytest
from benchmarl.algorithms import (
algorithm_config_registry,
IddpgConfig,
IppoConfig,
IsacConfig,
MaddpgConfig,
MappoConfig,
MasacConfig,
QmixConfig,
)
from benchmarl.algorithms.common import AlgorithmConfig
from benchmarl.environments import Task, VmasTask
from benchmarl.experiment import Experiment
from benchmarl.models import MlpConfig
from torch import nn
from utils import _has_vmas
from utils_experiment import ExperimentUtils
@pytest.mark.skipif(not _has_vmas, reason="VMAS not found")
class TestVmas:
@pytest.mark.parametrize("algo_config", algorithm_config_registry.values())
@pytest.mark.parametrize("prefer_continuous", [True, False])
@pytest.mark.parametrize("task", [VmasTask.BALANCE])
def test_all_algos(
self,
algo_config: AlgorithmConfig,
task: Task,
prefer_continuous,
experiment_config,
mlp_sequence_config,
):
# To not run the same test twice
if (prefer_continuous and not algo_config.supports_continuous_actions()) or (
not prefer_continuous and not algo_config.supports_discrete_actions()
):
pytest.skip()
task = task.get_from_yaml()
experiment_config.prefer_continuous_actions = prefer_continuous
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=mlp_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize("algo_config", [IppoConfig, MasacConfig])
@pytest.mark.parametrize("task", list(VmasTask))
def test_all_tasks(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
mlp_sequence_config,
):
task = task.get_from_yaml()
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=mlp_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
def test_collect_with_grad(
self,
experiment_config,
mlp_sequence_config,
algo_config: AlgorithmConfig = IppoConfig,
task: Task = VmasTask.BALANCE,
):
task = task.get_from_yaml()
experiment_config.collect_with_grad = True
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=mlp_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize(
"algo_config", [IppoConfig, QmixConfig, IsacConfig, IddpgConfig]
)
@pytest.mark.parametrize("task", [VmasTask.NAVIGATION])
def test_gnn(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
mlp_gnn_sequence_config,
):
task = task.get_from_yaml()
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=mlp_gnn_sequence_config,
critic_model_config=mlp_gnn_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize(
"algo_config", [MaddpgConfig, IppoConfig, QmixConfig, MasacConfig]
)
@pytest.mark.parametrize("task", [VmasTask.NAVIGATION])
def test_gru(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
gru_mlp_sequence_config,
share_params: bool = False,
):
algo_config = algo_config.get_from_yaml()
if algo_config.has_critic():
algo_config.share_param_critic = share_params
experiment_config.share_policy_params = share_params
task = task.get_from_yaml()
experiment = Experiment(
algorithm_config=algo_config,
model_config=gru_mlp_sequence_config,
critic_model_config=gru_mlp_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize(
"algo_config", [IddpgConfig, MappoConfig, QmixConfig, IsacConfig]
)
@pytest.mark.parametrize("task", [VmasTask.NAVIGATION])
def test_lstm(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
lstm_mlp_sequence_config,
share_params: bool = False,
):
algo_config = algo_config.get_from_yaml()
if algo_config.has_critic():
algo_config.share_param_critic = share_params
experiment_config.share_policy_params = share_params
task = task.get_from_yaml()
experiment = Experiment(
algorithm_config=algo_config,
model_config=lstm_mlp_sequence_config,
critic_model_config=lstm_mlp_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize("algo_config", algorithm_config_registry.values())
@pytest.mark.parametrize("task", [VmasTask.BALANCE])
def test_reloading_trainer(
self,
algo_config,
task: Task,
experiment_config,
mlp_sequence_config,
):
algo_config = algo_config.get_from_yaml()
ExperimentUtils.check_experiment_loading(
algo_config=algo_config,
model_config=mlp_sequence_config,
experiment_config=experiment_config,
task=task.get_from_yaml(),
)
@pytest.mark.parametrize(
"algo_config", [QmixConfig, IppoConfig, MaddpgConfig, MasacConfig]
)
@pytest.mark.parametrize("task", [VmasTask.NAVIGATION])
@pytest.mark.parametrize("share_params", [True, False])
def test_share_policy_params(
self,
algo_config: AlgorithmConfig,
task: Task,
share_params,
experiment_config,
mlp_sequence_config,
):
experiment_config.share_policy_params = share_params
critic_model_config = MlpConfig(
num_cells=[6], activation_class=nn.Tanh, layer_class=nn.Linear
)
task = task.get_from_yaml()
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=mlp_sequence_config,
critic_model_config=critic_model_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()