-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFoolboxAttack.py
executable file
·328 lines (247 loc) · 11.8 KB
/
FoolboxAttack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 2 18:43:53 2020
@author: ngopc
"""
import numpy as np
import torch
import torchvision
import torch.nn as nn
from torchvision import transforms
import math
import json
#from FGSM import fgsm
import foolbox.attacks as fa
from foolbox import PyTorchModel, accuracy, samples
from tqdm import trange
import psutil
import matplotlib.pyplot as plt
import time
import os
class FoolboxAttack:
def __init__(self, batch_size, device, mean, std, attack_method = 'fgsm'):
self.batch_size = batch_size
self.device = device
self.mean = mean
self.std = std
self.preprocessing = dict(mean=self.mean, std=self.std, axis=-3)
self.attack = self._get_attack(attack_method)
def FoolboxModel(self, model_class, model_name, model_path):
path = os.path.join(model_path, model_name)
try:
model_class.load_state_dict(torch.load(path))
except:
checkpoint = torch.load(path)
model_class.load_state_dict(checkpoint['model_state_dict'])
model_class.eval().to(self.device)
fmodel = PyTorchModel(model_class, bounds=(0, 1), device = self.device, preprocessing=self.preprocessing)
return fmodel
def FoolboxModel2(self, model):
model.eval().to(self.device)
fmodel = PyTorchModel(model, bounds=(0, 1), device=self.device, preprocessing=self.preprocessing)
return fmodel
def getClean(self, fmodel, x_test, y_test):
device = self.device
y_output = torch.tensor([], device = device, dtype = torch.long)
batch_size = self.batch_size
test_size = x_test.shape[0]
for batchIdx in range(math.ceil(test_size / batch_size)):
start_batch = batchIdx * batch_size
end_batch = min((batchIdx+1)* batch_size, test_size)
x_batch = x_test[start_batch:end_batch].to(device)
y_batch = y_test[start_batch:end_batch].to(device)
y_output_batch = fmodel(x_batch).softmax(-1).argmax(-1)
y_output = torch.cat((y_output, y_output_batch))
correct_index = torch.where(y_output == y_test)[0].cpu().numpy()
clean_accuracy = correct_index.shape[0] / x_test.shape[0]
return clean_accuracy, correct_index.tolist()
def getRobust(self, fmodel, x_test, y_test, epsilons):
attack = self.attack
batch_size = self.batch_size
rho_array = []
device = self.device
test_size = x_test.shape[0]
successAttack = np.zeros((len(epsilons,)))
for batchIdx in range(math.ceil(test_size / batch_size)):
start_batch = batchIdx * batch_size
end_batch = min((batchIdx+1)* batch_size, test_size)
x_batch = x_test[start_batch:end_batch].to(device)
y_batch = y_test[start_batch:end_batch].to(device)
cur_size = end_batch - start_batch
_, _, success = attack(fmodel, x_batch, y_batch, epsilons=epsilons)
success = success.cpu().numpy()
assert success.shape == (len(epsilons), len(x_batch))
assert success.dtype == np.bool
successAttack += np.sum(success, axis = -1)
robust_accuracy = 1 - (successAttack / test_size)
return robust_accuracy
def getRho(self, fmodel, x_test, y_test, epsilons):
attack = self.attack
batch_size = self.batch_size
rho_array = []
success_array = []
device = self.device
test_size = x_test.shape[0]
successAttack = 0
for batchIdx in trange(math.ceil(test_size / batch_size)):
start_batch = batchIdx * batch_size
end_batch = min((batchIdx + 1) * batch_size, test_size)
x_batch = x_test[start_batch:end_batch].to(device)
y_batch = y_test[start_batch:end_batch].to(device)
cur_size = end_batch - start_batch
_, advs, success = attack(fmodel, x_batch, y_batch, epsilons=[None])
numer = torch.norm(advs[0] - x_batch, p=2, dim=(1, 2, 3))
denom = torch.norm(x_batch, p=2, dim=(1, 2, 3))
rho = numer / denom
success_array.append(torch.squeeze(success, 0))
success = success.cpu().numpy()
assert success.shape == (1, len(x_batch))
assert success.dtype == np.bool
successAttack += np.sum(success, axis=-1)
rho_array.append(rho)
rho_tensor = torch.cat(rho_array, dim=0)
success_tensor = torch.cat(success_array, dim=0)
rho_mean = torch.mean(rho_tensor[success_tensor], dim=0)
robust_accuracy = 1 - (successAttack / test_size)
return robust_accuracy, rho_mean.cpu().numpy()
def getAdv(self, fmodel, x_test, y_test, epsilons):
attack = self.attack
successAttack = np.zeros((len(epsilons, )))
_, advs, success = attack(fmodel, x_test, y_test, epsilons=epsilons)
success = success.cpu().numpy()
assert success.shape == (len(epsilons), len(x_test))
assert success.dtype == np.bool
return advs, success
def _get_attack(self, attack):
if attack == 'fgsm':
return fa.FGSM()
elif attack == 'pgd':
return fa.PGD()
elif attack == 'deepfooll2':
return fa.LinfDeepFoolAttack()
elif attack == 'deepfoollinf':
return fa.L2DeepFoolAttack()
else:
raise Exception("Attack not implemented")
class AttackLogging():
def __init__(self, numEpsilons):
self.correct_index = []
self.clean = {}
self.robust = np.zeros((1, numEpsilons))
self.rho = np.zeros((1, numEpsilons))
def logClean(self, setting_name, clean_accuracy, correct_index):
self._collectIdx(correct_index)
self._collectClean(setting_name, clean_accuracy)
def _collectIdx(self, correct_index):
if len(self.correct_index) == 0:
self.correct_index = correct_index
else:
correctIndex = set(self.correct_index)
tempIndex = set(correct_index)
self.correct_index = list(correctIndex.intersection(tempIndex))
def _collectClean(self, setting_name, clean_accuracy):
self.clean[setting_name] = clean_accuracy
def logRobust(self, setting_name, robust_accuracy):
self.robust = np.concatenate((self.robust, np.expand_dims(robust_accuracy, 0)), axis = 0)
def logRho(self, setting_name, rho):
self.rho = np.concatenate((self.rho, np.expand_dims(rho, 0)), axis = 0)
def saveLogs(self, seed, path):
with open(os.path.join(path,'cleanAccuracy_seed={}.json'.format(seed)), 'w') as file:
json.dump(self.clean, file, indent=4)
np.save(os.path.join(path,'robustAccuracy_seed={}.npy'.format(seed)), self.robust)
# class FoolboxAttack():
# def __init__(self, model_class, model_names, x_test, y_test, param, mean, std):
# self.param = param
# self.model_class = model_class
# self.model_names = model_names
# self.x_test = x_test.to(self.param.device)
# self.y_test = y_test.to(self.param.device)
# self.mean = mean
# self.std = std
# self.attack = self._get_attack(param.attack_method)
# self.epsilons = self._getEpsilons(param.min_epsilon, param.max_epsilon, param.step_epsilon)
# self.numEpsilons = len(self.epsilons)
# self.numModels = len(self.model_names)
# # Logging purposes
# self.correct_index = []
# self.clean = {}
# self.robust = np.zeros((1, self.numEpsilons))
# assert self.x_test.is_cuda == (self.param.device == 'cuda')
# assert self.y_test.is_cuda == (self.param.device == 'cuda')
# def FoolboxModel(self, model_name):
# model = self._TorchModel(model_name)
# preprocessing = dict(mean=self.mean, std=self.std, axis=-3) # Need to adapt to MNIST
# fmodel = PyTorchModel(model, bounds=(0, 1), device = self.param.device, preprocessing=preprocessing)
# return fmodel
# def getClean(self, fmodel):
# device = self.param.device
# batch_size = self.param.batch_size
# y_output = torch.tensor([], device = device, dtype = torch.long)
# test_size = self.x_test.shape[0]
# for batchIdx in range(math.ceil(test_size / batch_size )):
# start_batch = batchIdx * batch_size
# end_batch = min((batchIdx+1)* batch_size, test_size)
# x_batch = self.x_test[start_batch:end_batch].to(device)
# y_batch = self.y_test[start_batch:end_batch].to(device)
# y_output_batch = fmodel(x_batch).softmax(-1).argmax(-1)
# y_output = torch.cat((y_output, y_output_batch))
# correct_index = torch.where(y_output == self.y_test)[0].cpu().numpy()
# clean_accuracy = correct_index.shape[0] / self.x_test.shape[0]
# return clean_accuracy, correct_index.tolist()
# def logClean(self, model_name, clean_accuracy, correct_index):
# self._collectIdx(correct_index)
# self._collectClean(model_name, clean_accuracy)
# def getRobust(self, fmodel):
# assert len(self.correct_index) != 0
# epsilons = self.epsilons
# device = self.param.device
# batch_size = self.param.batch_size
# successAttack = np.zeros((len(epsilons,)))
# x_test, y_test = self._getCommonDataset()
# test_size = x_test.shape[0]
# for batchIdx in range(math.ceil(test_size / batch_size )):
# start_batch = batchIdx * batch_size
# end_batch = min((batchIdx+1)* batch_size, test_size)
# x_batch = self.x_test[start_batch:end_batch].to(device)
# y_batch = self.y_test[start_batch:end_batch].to(device)
# _, _, success = self.attack(fmodel, x_batch, y_batch, epsilons=epsilons)
# success = success.cpu().numpy()
# assert success.shape == (len(epsilons), len(x_batch))
# assert success.dtype == np.bool
# successAttack += np.sum(success, axis = -1)
# robust_accuracy = 1 - (successAttack / test_size)
# return robust_accuracy
# def logRobust(self, model_name, robust_accuracy):
# self.robust = np.concatenate((self.robust, np.expand_dims(robust_accuracy, 0)), axis = 0)
# def saveLogs(self, seed):
# path = self.param.model_dir
# with open(os.path.join(path,'cleanAccuracy_seed={}.json'.format(seed)), 'w') as file:
# json.dump(self.clean, file, indent=4)
# np.save(os.path.join(path,'robustAccuracy_seed={}.npy'.format(seed)), self.robust)
# def _get_attack(self, attack):
# if attack == 'fgsm':
# return fa.FGSM()
# elif attack == 'pgd':
# return fa.PGD()
# else:
# raise Exception("Attack not implemented")
# def _TorchModel(self, model_name):
# path = os.path.join(self.param.model_dir, model_name)
# model = self.model_class
# model.load_state_dict(torch.load(path))
# return model.eval().to(self.param.device)
# def _collectIdx(self, correct_index):
# if len(self.correct_index) == 0:
# self.correct_index = correct_index
# else:
# correctIndex = set(self.correct_index)
# tempIndex = set(correct_index)
# self.correct_index = list(correctIndex.intersection(tempIndex))
# def _collectClean(self, model_name, clean_accuracy):
# self.clean[model_name] = clean_accuracy
# def _getCommonDataset(self):
# correctIndex = np.array(self.correct_index)
# return self.x_test[correctIndex], self.y_test[correctIndex]
# def _getEpsilons(self, minEpsilon, maxEpsilon, step):
# return np.arange(minEpsilon, maxEpsilon, step)