-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrawHistogramNew.py
executable file
·157 lines (130 loc) · 6.8 KB
/
drawHistogramNew.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import torch
import argparse
import os
from tqdm import trange
import numpy as np
from DataHandler import DataHandler
from Logging import info, success, warn
import numpy as np
import matplotlib.pyplot as plt
import pdb
# ---------------------------------------------------------------------------- #
# ARGUMENT PARSER #
# ---------------------------------------------------------------------------- #
parser = argparse.ArgumentParser()
# Dataset parameters.
parser.add_argument('--dataset', type=str, choices=['MNIST', 'CIFAR10', 'Imagenette'], help='Dataset to be used for experiment')
parser.add_argument('--data_dir', type=str, default='../data', help='Directory to download dataset to')
parser.add_argument('--output_dir', type=str, default='../output', help='Directory to dump output image in')
parser.add_argument('--imsize', type=int, help='Image size, set to 32 for MNIST and CIFAR10, set to 128 for Imagenette')
# Model parameters.
parser.add_argument('--model', help='Model type, set to basicmodel for MNIST, resnet9 for CIFAR10 and xresnet18 for Imagenette. Check LoadModel.py for the list of supported models.')
parser.add_argument('--activation', help='Activation function for the model, set to sigmoid for MNIST, celu for CIFAR10 and mish for Imagenette')
parser.add_argument('--pretrained_model_path', type=str, help='Path to the model file that was pretrained on the dataset to load')
parser.add_argument('--num_class', type=int, help='Number of classes')
parser.add_argument('--num_train', type=int, help='Number of samples to generate std from') # Named to maintain compatability with DataHandler
parser.add_argument('--seed', type=int, default=0, help='Seed')
# Miscellaneous experiment parameters
parser.add_argument('--batch_size', type=int, default=64, help='Batch size to do inference in this experiment')
parser.add_argument('--device', type=str, default='cuda', choices=['cuda', 'cpu'], help='Device to perform experiment on')
param = parser.parse_args()
# ---------------------------------------------------------------------------- #
# PARAMS & SETTINGS #
# ---------------------------------------------------------------------------- #
# Dataset parameters.
dataset = param.dataset
output_dir = param.output_dir
# Model parameters.
pretrained_model_path = param.pretrained_model_path
# Miscellaneous experiment parameters.
batch_size = param.batch_size
device = param.device
# Set the flag to tell the model that we want it to output intermediate layers
param.extract_intermediate_outputs = True
# Insert additional parameters
param.inject_noise = False
param.num_val = 0
# ---------------------------------------------------------------------------- #
# INSTANTIATE DATASET #
# ---------------------------------------------------------------------------- #
if dataset == 'MNIST':
from DatasetMNIST import DatasetMNIST as Dataset
elif dataset == 'CIFAR10':
from DatasetCIFAR10 import DatasetCIFAR10 as Dataset
elif dataset == 'Imagenette':
from DatasetImagenette import DatasetImagenette as Dataset
else:
raise Exception('Unsupported dataset.')
exit
dataset_class = Dataset(param)
(x_train_array, y_train_array), _ = dataset_class.getTrainVal(train_val_ratio=1.0)
datahandler = DataHandler(dataset_class, 'cpu')
x_tensor, _ = datahandler.loadAugmentedLabeled(x_train_array, y_train_array)
# ---------------------------------------------------------------------------- #
# LOAD PRETRAINED MODEL #
# ---------------------------------------------------------------------------- #
model = dataset_class.getModel()
if os.path.isfile(pretrained_model_path):
checkpoint = torch.load(pretrained_model_path, map_location=torch.device(device))
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
success(f'Successfully loaded model file from {pretrained_model_path}.')
else:
raise Exception(f'No model file found at {pretrained_model_path}.')
exit
# ---------------------------------------------------------------------------- #
# GENERATE INTERMEDIATE OUTPUTS #
# ---------------------------------------------------------------------------- #
info('Generating intermediate outputs.')
intermediate_outputs = torch.Tensor()
with torch.no_grad():
for batchIdx in trange(math.ceil(x_tensor.shape[0]/batch_size)):
start_batch = batchIdx*batch_size
end_batch = min((batchIdx+1)*batch_size, x_tensor.shape[0])
x_anchor = x_tensor[start_batch:end_batch]
x_anchor = x_anchor.to(device)
x_intermediate = model(x_anchor).to(device)
intermediate_outputs = torch.cat((intermediate_outputs.to(device), x_intermediate), dim=0)
# ---------------------------------------------------------------------------- #
# PROCESS INTERMEDIATE OUTPUTS #
# ---------------------------------------------------------------------------- #
info('Processing intermediate outputs.')
histogram_values = []
for i in trange(intermediate_outputs.shape[0]):
for j in range(i+1, intermediate_outputs.shape[0]): # dont mess up your own trange.
image1 = intermediate_outputs[i]
image2 = intermediate_outputs[j]
diff = (image1 - image2)**2
diff = diff.flatten()
hist_value = np.sqrt(torch.sum(diff.detach()).item())/(intermediate_outputs.shape[1] * intermediate_outputs.shape[2] * intermediate_outputs.shape[3])
histogram_values.append(hist_value)
# ---------------------------------------------------------------------------- #
# PLOT HISTOGRAM WITH DATA #
# ---------------------------------------------------------------------------- #
mu = np.mean(histogram_values)
var = np.var(histogram_values)
rc_params = {'legend.fontsize': 'x-large',
'figure.figsize': (6, 6),
'axes.labelsize': 'x-large',
'axes.titlesize': 'x-large',
'xtick.labelsize': 'x-large',
'ytick.labelsize': 'x-large'}
plt.rcParams.update(rc_params)
histogram_values = np.asarray(histogram_values)
info(f'Mean: {mu}')
info(f'Variance: {var}')
n, bins, patches = plt.hist(x=histogram_values, bins='auto', color='#0504aa', alpha=0.7, rwidth=0.85)
plt.grid(axis='y', alpha=0.75)
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('L2 Norm Histogram')
plt.text(0.02, 7000, r'$\mu$=%f, var=%f'%(mu, var))
maxfreq = n.max()
plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10)
plt.show()
save_path = os.path.join(output_dir, 'NoiseInjectionHistogram.png')
plt.savefig(save_path)
success(f'Saved graph to {save_path}')