-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHybrid.py
48 lines (36 loc) · 1.73 KB
/
Hybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn.functional as F
from jukebox.vqvae.vqvae import VQVAE
from audio_diffusion.models import DiffusionAttnUnet1D
from audio_diffusion.utils import ema_update
from viz.viz import audio_spectrogram_image
# VQ-VAE encoding
def encode_with_vqvae(vqvae, audio_input):
encoded_audio, *_ = vqvae.encode(audio_input)
return encoded_audio
# DDIM denoising
def denoise_with_ddim(ddim_model, encoded_audio, timesteps):
denoised_audio = sample(ddim_model, encoded_audio, steps=timesteps, eta=0)
return denoised_audio
# VQ-VAE decoding
def decode_with_vqvae(vqvae, denoised_audio):
decoded_audio = vqvae.decode(denoised_audio)
return decoded_audio
# Main function to integrate VQ-VAE and DDIM
def generate_audio_with_vqvae_ddim(vqvae, ddim_model, raw_audio_input, timesteps):
encoded_audio = encode_with_vqvae(vqvae, raw_audio_input)
denoised_audio = denoise_with_ddim(ddim_model, encoded_audio, timesteps)
final_audio_output = decode_with_vqvae(vqvae, denoised_audio)
return final_audio_output
if __name__ == "__main__":
vqvae_model = VQVAE(...) # Initialize with the appropriate parameters
vqvae_model.load_state_dict(torch.load("path_to_vqvae_model_weights.pt"))
vqvae_model.eval()
ddim_model = DiffusionAttnUnet1D(...) # Initialize with the appropriate parameters
ddim_model.load_state_dict(torch.load("path_to_ddim_model_weights.pt"))
ddim_model.eval()
# Provide a sample raw audio input and specify timesteps for DDIM
raw_audio_sample = ... # Load or generate a sample raw audio input
timesteps = ...
# Generate audio using the integrated model
generated_audio = generate_audio_with_vqvae_ddim(vqvae_model, ddim_model, raw_audio_sample, timesteps)