forked from developer-subhajit/stock_price_prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw_neural.py
125 lines (108 loc) · 4.29 KB
/
draw_neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import matplotlib.pyplot as plt
import streamlit as st
def draw_neural_net(ax, left, right, bottom, top, layer_sizes):
"""
Draw a neural network cartoon using matplotlib.
Parameters:
ax: matplotlib.axes.Axes
The axes on which to plot the cartoon (get e.g. by plt.gca())
left: float
The center of the leftmost node(s) will be placed here
right: float
The center of the rightmost node(s) will be placed here
bottom: float
The center of the bottommost node(s) will be placed here
top: float
The center of the topmost node(s) will be placed here
layer_sizes: list of int
List of layer sizes, including input and output dimensionality
"""
v_spacing = (top - bottom) / float(max(layer_sizes))
h_spacing = (right - left) / float(len(layer_sizes) - 1)
# Nodes
for n, layer_size in enumerate(layer_sizes):
layer_top = v_spacing * (layer_size - 1) / 2.0 + (top + bottom) / 2.0
for m in range(layer_size):
circle = plt.Circle(
(n * h_spacing + left, layer_top - m * v_spacing),
v_spacing / 4.0,
color="w",
ec="k",
zorder=5,
)
ax.add_artist(circle)
# Add node number
plt.text(n * h_spacing + left, layer_top - m * v_spacing, f"{m+1}", ha="center", va="center", fontsize=10)
# Annotation
if n == 0:
plt.annotate(
"Input",
xy=(n * h_spacing + left, (top + bottom) / 2),
xytext=(-20, 20),
textcoords="offset points",
ha="center",
va="center",
fontsize=12,
)
elif n == len(layer_sizes) - 1:
plt.annotate(
"Output",
xy=(n * h_spacing + left, (top + bottom) / 2),
xytext=(20, 20),
textcoords="offset points",
ha="center",
va="center",
fontsize=12,
)
else:
plt.annotate(
f"",
xy=(n * h_spacing + left, (top + bottom) / 2),
xytext=(0, 5),
textcoords="offset points",
ha="center",
va="center",
fontsize=12,
)
# Edges
for n, (layer_size_a, layer_size_b) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
layer_top_a = v_spacing * (layer_size_a - 1) / 2.0 + (top + bottom) / 2.0
layer_top_b = v_spacing * (layer_size_b - 1) / 2.0 + (top + bottom) / 2.0
for m in range(layer_size_a):
for o in range(layer_size_b):
line = plt.Line2D(
[n * h_spacing + left, (n + 1) * h_spacing + left],
[layer_top_a - m * v_spacing, layer_top_b - o * v_spacing],
c="k",
)
ax.add_artist(line)
def main():
# Set title
st.title("Neural Network Architecture Diagram")
# Add checkbox for default or customize
default_settings = st.checkbox("Default settings", value=True)
if default_settings:
# Default settings
num_hidden_layers = 2
hidden_layer_sizes = [4, 4]
else:
# Ask user for the number of hidden layers and the number of nodes in each hidden layer
num_hidden_layers = st.number_input(
"Enter the number of hidden layers", min_value=1, max_value=10, value=2, step=1
)
hidden_layer_sizes = []
for i in range(num_hidden_layers):
layer_size = st.number_input(
f"Enter the number of nodes in hidden layer {i+1}", min_value=1, max_value=100, value=4, step=1
)
hidden_layer_sizes.append(layer_size)
# Create a figure and axis
fig, ax = plt.subplots(figsize=(10, 5))
# Draw neural network diagram
draw_neural_net(ax, left=0.1, right=0.9, bottom=0.1, top=0.9, layer_sizes=[1] + hidden_layer_sizes + [1])
# Set axis properties
ax.axis("off")
# Display diagram
st.pyplot(fig)
if __name__ == "__main__":
main()