-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
252 lines (195 loc) · 9.57 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch.nn as nn
import torch
import torch.optim as optim
import torch.utils.data as data
import math
import copy
# implementation taken from PyTorch Documentation / Datacamp
# https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
"""
Arguments:
x: Tensor, shape ``[seq_len, batch_size, embedding_dim]``
"""
x = x + self.pe[:x.size(0)]
return x
#return self.dropout(x)
class MultiHeadAttention(nn.Module):
def __init__(self, d_model,num_heads):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be div by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.d_k = d_model // num_heads # dim of each heads k, q, v
self.W_q = nn.Linear(d_model, d_model)
self.W_k = nn.Linear(d_model, d_model)
self.W_v = nn.Linear(d_model, d_model)
self.W_o = nn.Linear(d_model, d_model)
def scaled_dot_product_attention(self, Q, K, V, mask=None):
attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
#print(mask.size())
#mask = mask.unsqueeze(1).unsqueeze(2)
attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
attn_probs = torch.softmax(attn_scores, dim=-1)
output = torch.matmul(attn_probs, V)
return output
def split_heads(self, x):
batch_size, seq_length, d_model = x.size()
return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
def combine_heads(self, x):
batch_size, _, seq_length, d_k = x.size()
return x.transpose(1, 2).contiguous().view(batch_size,seq_length, self.d_model)
def forward(self, Q, K, V, mask=None):
Q = self.split_heads(self.W_q(Q))
K = self.split_heads(self.W_k(K))
V = self.split_heads(self.W_v(V))
attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
output = self.W_o(self.combine_heads(attn_output))
return output
class PositionWiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff):
super(PositionWiseFeedForward, self).__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
self.relu= nn.ReLU()
def forward(self, x):
return self.fc2(self.relu(self.fc1(x)))
class DecoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.2):
super(DecoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, num_heads)
self.cross_attn = nn.MultiheadAttention(d_model, num_heads)
self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
# def forward(self, x, enc_output, src_mask, tgt_mask):
# attn_output = self.self_attn(x, x, x, tgt_mask)
# x = self.norm1(x + self.dropout(attn_output))
# attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
# x = self.norm2(x + self.dropout(attn_output))
# ff_output = self.ffn(x)
# x = self.norm3(x + self.dropout(ff_output))
# return x
def forward(self, x, enc_output, src_padding_mask, tgt_padding_mask, tgt_causal_mask):
# Self-attention with causal and padding masks
attn_output, _ = self.self_attn(
x, x, x, attn_mask=tgt_causal_mask, key_padding_mask=~tgt_padding_mask
)
x = self.norm1(x + self.dropout(attn_output))
# Cross-attention with src padding mask
attn_output, _ = self.cross_attn(
x, enc_output, enc_output, key_padding_mask=~src_padding_mask
)
x = self.norm2(x + self.dropout(attn_output))
# Feed-forward
ff_output = self.feed_forward(x)
x = self.norm3(x + self.dropout(ff_output))
return x
class EncoderLayer(nn.Module):
''' Transform input tokens into contextualized representations '''
def __init__(self, d_model, num_heads, d_ff, dropout=0.2,):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads)
self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
attn_output = self.self_attn(x, x, x, mask)
x = self.norm1(x + self.dropout(attn_output))
ff_output = self.feed_forward(x)
x = self.norm2(x + self.dropout(ff_output))
return x
class Transformer(nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads,
num_layers, d_ff, max_seq_length, dropout=0.2):
super(Transformer, self).__init__()
self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
self.positional_encoding = PositionalEncoding(d_model, dropout, max_seq_length)
self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
self.fc = nn.Linear(d_model, tgt_vocab_size)
self.dropout = nn.Dropout(dropout)
self.num_heads = num_heads
def generate_mask(self, src, tgt):
src_mask = (src != 0)
#tgt_mask = (tgt != 0)
#print(f'SRC_MASK og {src_mask.size()}')
#print(f'TGT_MASK og {tgt_mask.size()}')
tgt_padding_mask = (tgt != 0)
src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(2)
#tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3) # OG
#print(f'SRC_MASK unsqueeze {src_mask.size()}')
#print(f'TGT_MASK unsqueeze {tgt_mask.size()}')
seq_length = tgt.size(1)
nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
#print(f'NOPEAK_MASK {nopeak_mask.size()}')
#tgt_mask = tgt_mask & nopeak_mask
#tgt_mask = nopeak_mask # Use this for attn_mask
#attn_mask = nopeak_mask.unsqueeze(0).repeat(self.num_heads, 1, 1)
attn_mask = nopeak_mask.unsqueeze(0).expand(self.num_heads, -1, -1)
return src_mask, tgt_padding_mask, attn_mask
#print(f'TGT_MASK & NOPEAK_MASK {tgt_mask.size()}')
return src_mask, tgt_mask
def forward(self, src, tgt):
#src_mask, tgt_mask = self.generate_mask(src, tgt)
src_mask, tgt_padding_mask, tgt_causal_mask = self.generate_mask(src, tgt)
#src_mask_dec = src_mask.squeeze(1).squeeze(1)
#tgt_mask_dec = tgt_mask.squeeze(1).squeeze(1)
#print(f"transformer forward src_mask : {src_mask.size()}")
#print(f"transformer forward tgt_mask : {tgt_mask.size()}")
src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))
enc_output = src_embedded
for enc_layer in self.encoder_layers:
print(f'Adding encoder layer...')
enc_output = enc_layer(enc_output, src_mask)
dec_output = tgt_embedded
for dec_layer in self.decoder_layers:
print(f'Adding decoder layer...')
#print(f'Adding decoder layer... src_mask {src_mask_dec.size()}, tgt_mask {tgt_mask_dec.size()}')
#dec_output = dec_layer(dec_output, enc_output,src_mask_dec, tgt_mask_dec)
#dec_output = dec_layer(dec_output, enc_output,src_mask, tgt_mask)
dec_output = dec_layer(dec_output, enc_output,src_mask, tgt_padding_mask, tgt_causal_mask)
output = self.fc(dec_output)
return output
def test_transformer():
src_vocab_size = 5000
tgt_vocab_size = 5000
d_model = 512
num_heads = 8
num_layers = 6
d_ff = 2048
max_seq_length = 100
dropout = 0.1
transformer = Transformer(src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout)
# Generate random sample data
src_data = torch.randint(1, src_vocab_size, (64, max_seq_length)) # (batch_size, seq_length)
tgt_data = torch.randint(1, tgt_vocab_size, (64, max_seq_length)) # (batch_size, seq_length)
criterion = nn.CrossEntropyLoss(ignore_index=0)
optimizer = optim.Adam(transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)
transformer.train()
for epoch in range(100):
optimizer.zero_grad()
output = transformer(src_data, tgt_data[:, :-1])
loss = criterion(output.contiguous().view(-1, tgt_vocab_size), tgt_data[:, 1:].contiguous().view(-1))
loss.backward()
optimizer.step()
print(f"Epoch: {epoch+1}, Loss: {loss.item()}")
if __name__ == "__main__":
test_transformer()