-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoption.py
359 lines (334 loc) · 13.6 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os, copy
import configargparse
import socket
from helper.util import get_teacher_name
from utils import update_args, strlist_to_list, check_path
hostname = socket.gethostname()
# parser = configargparse.ArgumentParser('argument for training')
from smilelogging import argparser as parser
subparsers = parser.add_subparsers()
parser.add_argument('--print_freq',
type=int,
default=100,
help='print frequency')
parser.add_argument('--tb_freq', type=int, default=500, help='tb frequency')
parser.add_argument('--save_freq', type=int, default=-1, help='save frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers',
type=int,
default=8,
help='num of workers to use')
parser.add_argument('--epochs',
type=int,
default=240,
help='number of training epochs')
parser.add_argument('--init_epochs',
type=int,
default=30,
help='init training for two-stage methods')
# optimization
parser.add_argument('--learning_rate',
type=float,
default=0.05,
help='learning rate')
parser.add_argument('--lr_decay_epochs',
type=str,
default='150,180,210',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate',
type=float,
default=0.1,
help='decay rate for learning rate')
parser.add_argument('--weight_decay',
type=float,
default=5e-4,
help='weight decay')
parser.add_argument('--weight_decay_schedule',
type=str,
default=None,
help='using non-constant weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# dataset
parser.add_argument('--dataset',
type=str,
default='cifar100',
choices=['cifar100', 'svhn', 'imagenet', 'imagenet100', 'tinyimagenet'],
help='dataset')
# model
parser.add_argument(
'--model_s',
type=str,
default='resnet8',
choices=[
'resnet8', 'resnet14', 'resnet20', 'resnet32', 'resnet44', 'resnet56',
'resnet110', 'resnet8x4', 'resnet32x4', 'wrn_16_1', 'wrn_16_2',
'wrn_40_1', 'wrn_40_2', 'wrn_28_10', 'vgg8', 'vgg8_3neurons', 'vgg11',
'vgg13', 'vgg16', 'vgg19', 'ResNet50', 'MobileNetV2',
'MobileNetV2_0_25', 'ShuffleV1', 'ShuffleV2', 'ShuffleV2_0_3',
'resnet18', 'resnet34', 'resnet50'
])
parser.add_argument('--path_t',
type=str,
default=None,
help='teacher model snapshot')
# distillation
parser.add_argument('--distill',
type=str,
default='kd',
choices=[
'kd', 'hint', 'attention', 'similarity', 'correlation',
'vid', 'crd', 'kdsvd', 'fsp', 'rkd', 'pkt', 'abound',
'factor', 'nst', 'dcs', 'dcs+crd'
])
parser.add_argument('--trial', type=str, default='1', help='trial id')
parser.add_argument('-r',
'--gamma',
type=float,
default=1,
help='weight for classification')
parser.add_argument('-a',
'--alpha',
type=float,
default=None,
help='weight balance for KD')
parser.add_argument('-b',
'--beta',
type=float,
default=None,
help='weight balance for other losses')
# KL distillation
parser.add_argument('--kd_T',
type=float,
default=4,
help='temperature for KD distillation')
parser.add_argument('--kd_S',
type=float,
default=4,
help='temperature for KD distillation')
# NCE distillation
parser.add_argument('--feat_dim',
default=128,
type=int,
help='feature dimension')
parser.add_argument('--mode',
default='exact',
type=str,
choices=['exact', 'relax'])
parser.add_argument('--nce_k',
default=16384,
type=int,
help='number of negative samples for NCE')
parser.add_argument('--nce_t',
default=0.07,
type=float,
help='temperature parameter for softmax')
parser.add_argument('--nce_m',
default=0.5,
type=float,
help='momentum for non-parametric updates')
# hint layer
parser.add_argument('--hint_layer',
default=2,
type=int,
choices=[0, 1, 2, 3, 4])
# --- @mst
parser.add_argument('--save_img_interval', type=int, default=1000000000)
parser.add_argument('--n_branch_fc_T', type=int, default=1)
parser.add_argument('--n_branch_fc_S', type=int, default=1)
parser.add_argument('--branch_layer_S', type=str, default='[]')
parser.add_argument('--branch_layer_T', type=str, default='[]')
parser.add_argument('--s_branch_target',
type=str,
default='t_branch',
choices=['t_branch', 't_logits'])
parser.add_argument('--branch_dropout_rate',
type=str,
default='[0,0,0,0,0,0]',
help='multi-head kd loss dropout rate')
parser.add_argument('--crd_multiheads', action="store_true")
parser.add_argument('--d_z', type=int, default=1000)
parser.add_argument('--update_data_interval', type=int, default=2)
parser.add_argument('--update_data_start', type=int, default=100)
parser.add_argument('--resume_student',
type=str,
default='',
help='resume student model')
parser.add_argument('--finetune_student',
type=str,
default='',
help='finetune student model')
parser.add_argument('--save_crd_loss', action='store_true')
parser.add_argument('--fix_student', action='store_true')
parser.add_argument('--reinit_student', action='store_true')
parser.add_argument('--fix_embed', action='store_true')
parser.add_argument('--embed', type=str, default='original')
parser.add_argument('--pretrained_embed', type=str, default='')
parser.add_argument('--model_t', type=str, default='resnet34')
parser.add_argument('--model_t_pretrained',
type=str,
help='the path of our own pretrained models')
parser.add_argument('--model_s_pretrained',
type=str,
help='the path of our own pretrained models')
parser.add_argument('--max_min_ratio', type=float, default=5)
parser.add_argument('--lr_DA', type=float, default=0)
parser.add_argument('--online_augment', action='store_true')
parser.add_argument('--two_loader', action='store_true')
parser.add_argument(
'--ratio_CE_loss',
type=float,
default=1,
help='in a batch, how many examples are counted for CE loss')
parser.add_argument(
'--lw_mix',
type=str,
default=None,
help='various mixup data augmentation ideas: mixup, manifold mixup, cutmix'
)
parser.add_argument('--mix_mode',
type=str,
choices=[
'identity', 'crop', 'flip', 'crop+flip', 'mixup',
'manifold_mixup', 'cutout', 'cutmix', 'cutmix_pick',
'patchmix', 'deepmixup', 'autoaugment', 'same', 'DA_pick'
])
parser.add_argument('--DA_pick_base',
type=str,
choices=[
'identity', 'crop', 'flip', 'crop+flip', 'mixup',
'manifold_mixup', 'cutout', 'cutmix', 'cutmix_pick',
'patchmix', 'deepmixup', 'autoaugment', 'same',
])
parser.add_argument('--mix_n_run', type=int, default=1)
parser.add_argument('--cut_size', type=int, default=16)
parser.add_argument('--lw_branch_kld', type=float, default=0.9)
parser.add_argument('--lw_branch_ce', type=float, default=0.1)
parser.add_argument('--cutmix_pick_criterion', type=str, default='kld')
parser.add_argument('--epoch_factor', type=float, default=0)
parser.add_argument(
'--use_DA',
type=str,
default='11',
help=
'first 1 indicates using rand crop; second 1 indicates using horizontal flip'
)
parser.add_argument(
'--no_DA',
action='store_true',
help='maintain back-compatibility, deprecated. Use --use_DA')
parser.add_argument(
'--lw_dcs',
type=float,
default=0.5,
help=
'when dcs+crd, the <b> argument is taken by crd, so introduce one for dcs')
parser.add_argument('--test_teacher', action='store_true')
parser.add_argument('--save_entropy_log_step',
type=int,
default=0,
help='step at which to save the entropy log')
parser.add_argument(
'--ceiling_ratio_schedule',
type=str,
default='',
help='ceiling area ratio in cutmix. example: 0:0.75,150:1,180:1,210:1')
parser.add_argument(
'--floor_ratio_schedule',
type=str,
default='',
help='floor area ratio in cutmix. example: 0:0.75,150:1,180:1,210:1')
parser.add_argument('--check_cutmix_label', action='store_true')
parser.add_argument('--bbox',
type=str,
default='rand_bbox',
choices=['rand_bbox', 'simpler_rand_bbox'],
help='the func of generating random bounding box')
parser.add_argument('--t_output_as_target_for_input_mix', action='store_true')
parser.add_argument('--cutmix_pick_scheme', type=str, default='sort')
parser.add_argument(
'--n_pick',
type=int,
default=64,
help='the number of samples picked out of all augmented samples')
parser.add_argument(
'--input_mix_no_kld_epoch',
type=int,
default=1000000,
help='after this epoch, NOT apply kld loss to the mixed input')
parser.add_argument('--train_linear_classifier',
action='store_true',
help='train linear classifier for middle layers')
parser.add_argument('--head_init',
type=str,
default='default',
choices=['default', 'orth'])
parser.add_argument('--branch_width_T', type=int, default=256)
parser.add_argument('--branch_width_S', type=int, default=256)
parser.add_argument(
'--epoch_stop_head_kd_loss',
type=int,
default=10000000,
help='after this epoch, for MHKD, do not apply kd loss to the heads')
parser.add_argument('--amp',
action='store_true',
help='automatic mixed precision training')
parser.add_argument('--only_test', type=str, default='')
parser.add_argument('--modify_student_input', type=str, default='')
parser.add_argument('--stack_input', action='store_true')
parser.add_argument('--n_patch',
type=int,
default=4,
help='num of patches in masking')
parser.add_argument('--mask_zero_ratio', type=float, default=0.5)
parser.add_argument('--fix_T_heads',
action='store_true',
help='fix the teacher heads when using dcs')
parser.add_argument('--test_loader_in_train',
action='store_true',
help="use test loader in training; for checking the std of teacher's mean prob")
# 'deepmixup' related arguments
parser.add_argument('--utils.ON', action='store_true')
parser.add_argument('--utils.check_ce_var', action='store_true')
parser.add_argument('--utils.check_ce_var_trainset_size',
type=int,
default=1000)
parser.add_argument('--utils.check_ce_var_v2', action='store_true')
parser.add_argument('--utils.check_ce_var_v3', action='store_true')
# ---
opt = parser.parse_args()
# check args
opt.branch_layer_T = strlist_to_list(opt.branch_layer_T, int)
opt.branch_layer_S = strlist_to_list(opt.branch_layer_S, int)
opt.branch_dropout_rate = strlist_to_list(opt.branch_dropout_rate, float)
opt.print_interval = opt.print_freq
opt.lw_mix = strlist_to_list(opt.lw_mix, float)
opt.entropy_log = [] if opt.save_entropy_log_step > 0 else None # initialize
# set different learning rate from these 4 models
if opt.dataset in ['cifar100', 'tinyimagenet']:
if opt.model_s in ['MobileNetV2', 'ShuffleV1', 'ShuffleV2']:
opt.learning_rate = 0.01
# set the path according to the environment
if hostname.startswith('visiongpu'):
opt.model_path = '/path/to/my/student_model'
opt.tb_path = '/path/to/my/student_tensorboards'
else:
opt.model_path = './save/student_model'
opt.tb_path = './save/student_tensorboards'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
# @mst: For easier scale of epochs like 2xtime, 2.5xtime
if opt.epoch_factor:
opt.lr_decay_epochs = [
int(x * opt.epoch_factor) for x in opt.lr_decay_epochs
]
opt.epochs = int(opt.epochs * opt.epoch_factor)
if opt.dataset in ['cifar100', 'svhn', 'tinyimagenet'
]: # For ImageNet, we use preset opt.model_t
opt.model_t = get_teacher_name(opt.path_t)
if opt.no_DA: # Maintain back-compatibility
opt.use_DA = '00'
if opt.mix_mode == 'cutmix_pick':
assert opt.mix_n_run >= 2
opt = update_args(opt)