-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_linear_classifer.py
318 lines (274 loc) · 12.6 KB
/
train_linear_classifer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from __future__ import print_function
import os
import argparse
import socket
import time
import tensorboard_logger as tb_logger
import torch
import torch.optim as optim
import torch.nn as nn
import torch.backends.cudnn as cudnn
from models import model_dict
import models.resnet_imagenet as resnet_imagenet
from dataset.cifar100 import get_cifar100_dataloaders
from dataset.svhn import get_svhn_dataloaders # kd-Huan: add svhn dataset
from dataset.tinyimagenet import get_tinyimagenet_dataloaders # kd-Huan: add tinyimagenet dataset
from dataset.imagenet import get_imagenet_dataloader
from helper.util import adjust_learning_rate, accuracy, AverageMeter
from helper.loops import validate
def parse_option():
hostname = socket.gethostname()
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=100, help='print frequency')
parser.add_argument('--tb_freq', type=int, default=500, help='tb frequency')
parser.add_argument('--save_freq', type=int, default=40, help='save frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=240, help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='150,180,210', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# dataset
parser.add_argument('--model', type=str, default='resnet110',
choices=['resnet8', 'resnet14', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110',
'resnet8x4', 'resnet32x4', 'wrn_16_1', 'wrn_16_2', 'wrn_40_1', 'wrn_40_2',
'vgg8', 'vgg8_3neurons', 'vgg11', 'vgg13', 'vgg13_3neurons', 'vgg16', 'vgg19',
'MobileNetV2', 'MobileNetV2_0_25', 'ShuffleV1', 'ShuffleV2', 'ShuffleV2_0_3', 'ResNet50', 'resnet18'])
parser.add_argument('--dataset', type=str, default='cifar100', choices=['cifar100', 'svhn', 'tinyimagenet', 'imagenet'], help='dataset')
parser.add_argument('-t', '--trial', type=int, default=0, help='the experiment id')
# --- kd-Huan
parser.add_argument('--project_name', type=str, default="")
parser.add_argument('--CodeID', type=str, default="")
parser.add_argument('--debug', action="store_true")
parser.add_argument('--screen_print', action="store_true")
parser.add_argument('--resume_ExpID', type=str)
parser.add_argument('--note', type=str)
parser.add_argument('--save_img_interval', type=int, default=200)
parser.add_argument('--npy_set', type=str, default='')
parser.add_argument('--augment', action='store_true')
parser.add_argument('--lw_selfkd', type=float, default=0)
parser.add_argument('--epoch_factor', type=float, default=0)
parser.add_argument('--use_DA', type=str, default='11', help='first 1 indicates using rand crop; second 1 indicates using horizontal flip')
parser.add_argument('--no_DA', action='store_true', help='maintain back-compatibility, deprecated. Use --use_DA')
parser.add_argument('--branch_layer', type=str, default='[]')
parser.add_argument('--pretrained', type=str, help='pretrained model')
parser.add_argument('--transfer', action="store_true")
opt = parser.parse_args()
opt.branch_layer = strlist_to_list(opt.branch_layer, int)
# ---
# set different learning rate from these 4 models
if opt.dataset in ['cifar100', 'tinyimagenet']:
if opt.model in ['MobileNetV2', 'ShuffleV1', 'ShuffleV2']:
opt.learning_rate = 0.01
# set the path according to the environment
if hostname.startswith('visiongpu'):
opt.model_path = '/path/to/my/model'
opt.tb_path = '/path/to/my/tensorboard'
else:
opt.model_path = './save/models'
opt.tb_path = './save/tensorboard'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
# --- kd-Huan: for easier scale of epochs like 2xtime, 2.5xtime
if opt.epoch_factor:
opt.lr_decay_epochs = [int(x * opt.epoch_factor) for x in opt.lr_decay_epochs]
opt.epochs = int(opt.epochs * opt.epoch_factor)
# ---
if opt.no_DA: # maintain back-compatibility
opt.use_DA = '00'
return opt
# --- kd-Huan
from logger import Logger
from utils import Timer, strlist_to_list, smart_weights_load, cal_acc
from branch import BranchConv
opt = parse_option()
logger_my = Logger(opt)
logprint = logger_my.log_printer
accprint = logger_my.log_printer.accprint
netprint = logger_my.log_printer.netprint
opt.save_folder = logger_my.weights_path
opt.print_interval = opt.print_freq
opt.logprint = logger_my.log_printer
timer = Timer(opt.epochs)
'''README-Huan:
This file is adapted from 'train_teacher.py'.
'''
# ---
def train(epoch, train_loader, model, criterion, optimizer, opt, trainable_list, print=print):
"""vanilla training"""
trainable_list.train()
num_step_per_epoch = len(train_loader)
for idx, (input, target) in enumerate(train_loader):
total_step = (epoch - 1) * num_step_per_epoch + idx
input = input.float()
if torch.cuda.is_available():
input = input.cuda()
target = target.cuda()
# ===================forward=====================
feat, logit = model(input, is_feat=True)
cnt, total_loss = -1, 0
acc1, loss = [], []
for ix in opt.branch_layer: # example: [1,2,3]
cnt += 1
head = trainable_list[cnt]
logit = head(feat[ix])
loss_ = criterion(logit, target)
total_loss += loss_
acc1.append(cal_acc(logit, target).item())
loss.append(loss_.item())
if idx % opt.print_freq == 0:
logtmp1 = ' '.join(['%.4f' % x for x in acc1])
logtmp2 = ' '.join(['%.4f' % x for x in loss])
print(f'Step {total_step} -- Train_accuracy {logtmp1} Train_loss {logtmp2}')
# ===================backward=====================
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
def main():
best_acc = 0
best_acc_epoch = 0
# dataloader
if opt.dataset == 'cifar100':
train_loader, _, val_loader = get_cifar100_dataloaders(batch_size=opt.batch_size, num_workers=opt.num_workers,
npy_set=opt.npy_set, augment=opt.augment, use_DA=opt.use_DA)
n_cls = 100
img_size = 32
elif opt.dataset == 'svhn':
train_loader, val_loader = get_svhn_dataloaders(batch_size=opt.batch_size, num_workers=opt.num_workers)
n_cls = 10
img_size = 32
elif opt.dataset == 'tinyimagenet':
train_loader, val_loader = get_tinyimagenet_dataloaders(batch_size=opt.batch_size, num_workers=opt.num_workers)
n_cls = 200
img_size = 64
elif opt.dataset == 'imagenet':
train_loader, val_loader = get_imagenet_dataloader(batch_size=opt.batch_size,
num_workers=opt.num_workers,
is_instance=False)
n_cls = 1000
img_size = 224
else:
raise NotImplementedError(opt.dataset)
# Set up model
criterion = nn.CrossEntropyLoss()
if opt.dataset == 'imagenet':
model = eval('resnet_imagenet.%s' % opt.model)().cuda()
else:
model = model_dict[opt.model](num_classes=n_cls, img_size=img_size).cuda()
# Load weights
ckpt = torch.load(opt.pretrained)
from collections import OrderedDict
state_dict = OrderedDict()
for k, v in ckpt['model'].items():
if opt.transfer and 'fc.' in k or 'linear.' in k or 'classifier.' in k: # all names for FC layers
continue
if k.startswith('module.'):
state_dict[k[7:]] = v
else:
state_dict[k] = v
model.load_state_dict(state_dict, strict=False) # strict=False for transfer learning case
logprint(f'Loading pretrained weights successfully: "{opt.pretrained}"')
if opt.dataset != 'imagenet':
acc1, loss = validate(val_loader, model, None, criterion, opt)
logprint(f'Its accuracy: {acc1:.4f}')
# fix the model
model.eval()
for param in model.parameters():
param.requires_grad = False
# add linear classifiers
trainable_list = nn.ModuleList([])
if opt.dataset in ['cifar100', 'svhn']:
data = torch.randn(2, 3, 32, 32)
if opt.dataset in ['tinyimagenet']:
data = torch.randn(2, 3, 64, 64)
if opt.dataset in ['imagenet']:
data = torch.randn(24, 3, 224, 224)
feat, _ = model(data.cuda(), is_feat=True)
for ix in opt.branch_layer:
logprint(f'Register branch: branch {ix} feature_shape: {feat[ix].shape}')
classifier = BranchConv(feat[ix], n_class=n_cls, avgpool=False, n_fc=1)
classifier = torch.nn.DataParallel(classifier)
trainable_list.append(classifier)
# optimizer
optimizer = optim.SGD(trainable_list.parameters(),
lr=opt.learning_rate,
momentum=opt.momentum,
weight_decay=opt.weight_decay)
# tensorboard
# logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
logger = None # kd-Huan: we will use our own logger
# routine
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(epoch, opt, optimizer)
logprint("==> training...")
# --- kd-Huan:
for param_group in optimizer.param_groups:
lr = param_group['lr']
logprint("==> Set lr %s @ Epoch %d " % (lr, epoch))
# ---
time1 = time.time()
train(epoch, train_loader, model, criterion, optimizer, opt, trainable_list, print=logprint)
time2 = time.time()
logprint('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
accprint('Predicted finish time: %s' % timer())
# test branches
acc1, loss = validate(val_loader, model, trainable_list, criterion, opt)
logtmp1 = ' '.join(['%.4f' % x for x in acc1])
logtmp2 = ' '.join(['%.4f' % x for x in loss])
logprint(f'Epoch {epoch} -- Test_accuracy {logtmp1} Test_loss {logtmp2}')
# save model
state = {
'epoch': epoch,
'model': trainable_list,
'state_dict': trainable_list.state_dict(),
'optimizer': optimizer.state_dict(),
}
save_file = os.path.join(opt.save_folder, 'ckpt.pth')
torch.save(state, save_file)
def validate(val_loader, model, trainable_list, criterion, opt):
"""validation"""
top1, loss = [], [] # branch classifier acc and loss
top1_model, loss_model = AverageMeter(), AverageMeter() # main network acc and loss
# switch to evaluate mode
model.eval()
if trainable_list:
trainable_list.eval()
for _ in opt.branch_layer:
top1 += [AverageMeter()]
loss += [AverageMeter()]
with torch.no_grad():
for idx, (input, target) in enumerate(val_loader):
input = input.float()
if torch.cuda.is_available():
input = input.cuda()
target = target.cuda()
model = model.cuda()
# compute output
feat, output = model(input, is_feat=True)
loss_ = criterion(output, target)
top1_, _ = accuracy(output, target, topk=(1, 5))
top1_model.update(top1_.item(), n=input.size(0))
loss_model.update(loss_.item(), n=input.size(0))
if trainable_list:
cnt = -1
for ix in opt.branch_layer: # example: [1,2,3]
cnt += 1
head = trainable_list[cnt]
output = head(feat[ix])
loss_ = criterion(output, target)
top1_, _ = accuracy(output, target, topk=(1, 5))
top1[cnt].update(top1_.item(), n=input.size(0))
loss[cnt].update(loss_.item(), n=input.size(0))
if trainable_list:
top1 = [x.avg for x in top1]
loss = [x.avg for x in loss]
return top1, loss
else:
return top1_model.avg, loss_model.avg
if __name__ == '__main__':
main()