-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmyplots.py
93 lines (72 loc) · 3.94 KB
/
myplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import matplotlib.pyplot as plt
import numpy as np
class Plots:
def __init__(self, tables, num_threads=str, iters=str, time=str):
self.num_threads = str(num_threads)
self.iters = str(iters)
self.time = str(time)
self.tables = tables
self.thread_groups = []
self.iter_groups = []
for t in self.tables.values():
self.thread_groups.append(t.groupby(self.num_threads, as_index=False))
self.iter_groups.append(t.groupby(self.iters, as_index=False))
def time_iter_plot(self, size=(15, 15)):
title = f'Dependency of {self.iters} on {self.time} for Different {self.num_threads}'
plt.figure(figsize=size)
plt.subplots_adjust(hspace=0.5, wspace=0.5)
plt.suptitle(title, fontsize=30)
for group, label in zip(self.thread_groups, self.tables.keys()):
s = np.ceil(np.sqrt(len(group))).astype(int)
for index, (thread_count, group_data) in enumerate(group, start=1):
plt.subplot(s, s, index)
plt.plot(group_data[self.iters], group_data[self.time],
linestyle='--', marker='o',
label=f'{label} - {self.num_threads} = {thread_count}')
plt.xlabel(self.iters)
plt.ylabel(self.time)
plt.legend()
plt.show()
def time_thread_plot(self, size=(15, 15)):
title = f'Dependency of {self.num_threads} on {self.time} for Different {self.iters}'
plt.figure(figsize=size)
plt.subplots_adjust(hspace=0.5, wspace=0.5)
plt.suptitle(title, fontsize=30)
for group, label in zip(self.iter_groups, self.tables.keys()):
for index, (iter_value, group_data) in enumerate(group, start=1):
group_data = group_data.reset_index()
plt.subplot(len(group), 1, index)
plt.plot(group_data[self.num_threads], group_data[self.time],
marker='o', linestyle='-',
label=f'{label} - {self.iters} = {iter_value}')
# Выделение точки с наименьшим значением красным цветом
min_time_idx = group_data[self.time].idxmin()
plt.scatter(group_data[self.num_threads].iloc[min_time_idx], group_data[self.time].iloc[min_time_idx],
color='black', marker='X', zorder=10)
plt.xlabel(self.num_threads)
plt.ylabel(self.time)
plt.legend()
plt.show()
def speedup_plot(self, base_num_threads=1, size=(15, 15)):
title = f'Dependency of {self.num_threads} on Speedup for Different {self.iters}'
plt.figure(figsize=size)
plt.subplots_adjust(hspace=0.5, wspace=0.5)
plt.suptitle(title, fontsize=30)
for group, label in zip(self.iter_groups, self.tables.keys()):
for index, (iter_value, group_data) in enumerate(group, start=1):
group_data = group_data.reset_index()
base_time = group_data[group_data[self.num_threads] == base_num_threads][self.time].values[0]
speedup = base_time / group_data[self.time]
plt.subplot(len(group), 1, index)
plt.plot(group_data[self.num_threads], speedup,
marker='o', linestyle='-',
label=f'{label} - {self.iters} = {iter_value}')
# Выделение точки с наибольшим значением ускорения красным цветом
max_speedup_idx = np.argmax(speedup)
plt.scatter(group_data[self.num_threads].iloc[max_speedup_idx], speedup.iloc[max_speedup_idx],
color='black',
marker='X', zorder=10)
plt.xlabel(self.num_threads)
plt.ylabel('Speedup')
plt.legend()
plt.show()