diff --git a/tutorial-contents-notebooks/303_build_nn_quickly.ipynb b/tutorial-contents-notebooks/303_build_nn_quickly.ipynb index 9e50276..2eebb63 100644 --- a/tutorial-contents-notebooks/303_build_nn_quickly.ipynb +++ b/tutorial-contents-notebooks/303_build_nn_quickly.ipynb @@ -15,22 +15,19 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, + "execution_count": 5, + "metadata": {}, "outputs": [], "source": [ "import torch\n", - "import torch.nn.functional as F" + "import torch.nn.functional as F\n", + "from collections import OrderedDict" ] }, { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# replace following class code with an easy sequential network\n", @@ -49,9 +46,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "net1 = Net(1, 10, 1)" @@ -59,10 +54,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, + "execution_count": 9, + "metadata": {}, "outputs": [], "source": [ "# easy and fast way to build your network\n", @@ -75,28 +68,48 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# network with specific layer names\n", + "net3 = torch.nn.Sequential(OrderedDict([\n", + " ('fc1', torch.nn.Linear(1, 10)),\n", + " ('relu', torch.nn.ReLU()),\n", + " ('output', torch.nn.Linear(10, 1))\n", + "]))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Net (\n", - " (hidden): Linear (1 -> 10)\n", - " (predict): Linear (10 -> 1)\n", + "Net(\n", + " (hidden): Linear(in_features=1, out_features=10, bias=True)\n", + " (predict): Linear(in_features=10, out_features=1, bias=True)\n", + ")\n", + "Sequential(\n", + " (0): Linear(in_features=1, out_features=10, bias=True)\n", + " (1): ReLU()\n", + " (2): Linear(in_features=10, out_features=1, bias=True)\n", ")\n", - "Sequential (\n", - " (0): Linear (1 -> 10)\n", - " (1): ReLU ()\n", - " (2): Linear (10 -> 1)\n", + "Sequential(\n", + " (fc1): Linear(in_features=1, out_features=10, bias=True)\n", + " (relu): ReLU()\n", + " (output): Linear(in_features=10, out_features=1, bias=True)\n", ")\n" ] } ], "source": [ "print(net1) # net1 architecture\n", - "print(net2) # net2 architecture" + "print(net2) # net2 architecture\n", + "print(net3) # net3 architecture" ] }, { @@ -111,7 +124,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -125,7 +138,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/tutorial-contents-notebooks/304_save_reload.ipynb b/tutorial-contents-notebooks/304_save_reload.ipynb index 5441d60..50c9d92 100644 --- a/tutorial-contents-notebooks/304_save_reload.ipynb +++ b/tutorial-contents-notebooks/304_save_reload.ipynb @@ -23,7 +23,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -50,9 +50,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)\n", @@ -63,9 +61,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def save():\n", @@ -77,8 +73,9 @@ " )\n", " optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)\n", " loss_func = torch.nn.MSELoss()\n", + " epochs = 100\n", "\n", - " for t in range(100):\n", + " for t in range(epochs):\n", " prediction = net1(x)\n", " loss = loss_func(prediction, y)\n", " optimizer.zero_grad()\n", @@ -86,23 +83,30 @@ " optimizer.step()\n", "\n", " # plot result\n", - " plt.figure(1, figsize=(10, 3))\n", - " plt.subplot(131)\n", + " plt.figure(1, figsize=(8, 8))\n", + " plt.subplot(221)\n", " plt.title('Net1')\n", " plt.scatter(x.data.numpy(), y.data.numpy())\n", " plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)\n", "\n", " # 2 ways to save the net\n", " torch.save(net1, 'net.pkl') # save entire net\n", - " torch.save(net1.state_dict(), 'net_params.pkl') # save only the parameters" + " torch.save(net1.state_dict(), 'net_params.pkl') # save only the parameters\n", + " \n", + " # can also save other information in a checkpoint - if continuing training\n", + " checkpoint = {'optimizer': optimizer,\n", + " 'optimizer state dict': optimizer.state_dict(),\n", + " 'network' : net1,\n", + " 'network state dict': net1.state_dict(),\n", + " 'epochs': epochs,\n", + " 'loss function': loss_func}\n", + " torch.save(checkpoint, 'checkpoint.pth')" ] }, { "cell_type": "code", "execution_count": 4, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def restore_net():\n", @@ -111,7 +115,7 @@ " prediction = net2(x)\n", "\n", " # plot result\n", - " plt.subplot(132)\n", + " plt.subplot(222)\n", " plt.title('Net2')\n", " plt.scatter(x.data.numpy(), y.data.numpy())\n", " plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)\n" @@ -120,9 +124,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def restore_params():\n", @@ -138,26 +140,71 @@ " prediction = net3(x)\n", "\n", " # plot result\n", - " plt.subplot(133)\n", + " plt.subplot(223)\n", " plt.title('Net3')\n", " plt.scatter(x.data.numpy(), y.data.numpy())\n", + " plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def restore_all():\n", + " # load in all network information and training info \n", + " checkpoint = torch.load('checkpoint.pth')\n", + " \n", + " #restore network info\n", + " net4 = checkpoint['network']\n", + " net4.load_state_dict(checkpoint['network state dict'])\n", + " \n", + " #load in optimizer info\n", + " optimizer = checkpoint['optimizer']\n", + " optimizer.load_state_dict(checkpoint['optimizer state dict'])\n", + " \n", + " #load in epochs\n", + " epochs = checkpoint['epochs']\n", + " \n", + " #load in loss function\n", + " loss_func = checkpoint['loss function']\n", + " \n", + " max_epochs = 150\n", + " \n", + " for t in range(epochs, max_epochs):\n", + " prediction = net4(x)\n", + " loss = loss_func(prediction, y)\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + " \n", + "\n", + " prediction = net4(x)\n", + "\n", + " # plot result\n", + " plt.subplot(224)\n", + " plt.title('Net4')\n", + " plt.scatter(x.data.numpy(), y.data.numpy())\n", " plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)\n", " plt.show()" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAADSCAYAAACIG474AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd0VMXbgJ9JJdSgFCEgIB2khxqaoAKiEmmCFEX9RNGf\nKEWDICgiLdJULIgKKijVSNMIojRpwdAxiIBA6L2F1Pn+2JTdnbtJILubLfOcwzns3Ll3J8l9dmfm\nzryvkFKi0Wg0Go1Go8k7PvndAI1Go9FoNBpPQXesNBqNRqPRaOyE7lhpNBqNRqPR2AndsdJoNBqN\nRqOxE7pjpdFoNBqNRmMndMdKo9FoNBqNxk7ojpVGo9FoNBqNndAdKxdCCHFUCHFWCFHIrOx5IcQf\nuTh3jhBinFXZK0KIGCFEohBijv1brNE4Fns6IYQIFEJ8KYT4TwhxTQixUwjRyUFN12gcggO+J74T\nQpwSQlwVQhwUQjzvgGZ7Fbpj5Xr4AoPtdK2TwDjgKztdT6PJD+zlhB9wHGgDFANGAQuFEBXtcG2N\nxpnY83tiAlBRSlkUeBwYJ4RoZKdreyW6Y+V6RALDhBDB1geEEDWEEKuFEBeFEHFCiJ7p5S8AfYA3\nhBDXhRDLAaSUS6WUUcAFZ/4AGo2dsYsTUsobUsp3pJRHpZRpUsoVwBFAf4lo3A17fk/sk1Impp8u\n0/9Vds6P4ZnojpXrEQP8AQwzL0yf9l0NzAdKAb2AT4QQtaSUs4B5wGQpZWEp5WPObbJG41Ac4oQQ\nojRQDdjn2OZrNHbHrk4IIT4RQtwE/gZOAauc8lN4KLpj5ZqMBv4nhChpVvYocFRK+bWUMkVKGQss\nAXrkSws1GudiVyeEEP6YvmTmSin/dkiLNRrHYjcnpJSDgCJAK2ApkJhdfU326I6VCyKl3AusACLM\niisATYUQlzP+YZrWvSc/2qjROBN7OiGE8AG+BZKAVxzUZI3Godj7e0JKmSql3AiUA15yRJu9Bb/8\nboDGJmOAv4Ap6a+PA+uklA/ZqC+d0iqNJv/IsxNCCAF8CZQGHpFSJjuioRqNk3DE94Qfeo1VntAz\nVi6KlPIQsAB4Nb1oBVBNCNFPCOGf/q+xEKJm+vEzwH3m1xBC+AkhCmDaQeIrhCgghNCdaY1bYg8n\ngE+BmsBjUsoEpzRco3EQeXVCCFFKCNFLCFFYCOErhOgA9AZ+c+bP4WnojpVrMxYoBCClvAY8jGkx\n4kngNDAJCEyv+yVQK336Nyq9bBSQgGmquG/6/0c5rfUajf25YyeEEBWAgUB94HT6zqjrQog+zv4h\nNBo7kpfvCYnpsd8J4BLwAfCalHKZU38CD0NIqZ8gaTQajUaj0dgDPWOl0Wg0Go1GYyd0x0qj0Wg0\nGo3GTuiOlUaj0Wg0Go2d0B0rjUaj0Wg0GjuhO1YajUaj0Wg0diLfYhqVKFFCVqxYMb/eXqOxYMeO\nHeellCVzruk4tBMaV0I7odFYklsncuxYCSG+wpR/6KyU8n6D432ANwEBXANeklLuyum6FStWJCYm\nJqdqGo1TEEL8dxt1tRMaj0c7odFYklsncvMocA7QMZvjR4A2Uso6wHvArNy8sUbjxsxBO6HRmDMH\n7YRGA+RixkpKuV4IUTGb43+avdyCKYGjRuOxaCc0Gku0ExpNFvZevP4c8LOtg0KIF4QQMUKImHPn\nztn5rTUal0Q7odFYop3QeDR261gJIR7AJMybtupIKWdJKUOllKElS+brmkiNxuFoJzQaS7QTGm/A\nLrsChRB1gdlAJynlBXtcMyo2nsjoOE5eTqBscBDDO1QnvEGIPS6t0Tgc7YRGY4l2QuMt5LljJYS4\nF1gK9JNSHsx7k0yyjFi6h4TkVADiLycwYukeAC2NxuXRTmg0lmgnNN5Ejo8ChRDfA5uB6kKIE0KI\n54QQLwohXkyvMhq4G/hECLFTCJHnvbGR0XGZsmSQkJxKZHRcXi+t0eQZ7YRGY4l2QqPJIje7Anvn\ncPx54Hm7tQg4eTnhtso1GmeindBoLNFOaDRZuGRKm7LBQbdVrtF4OtoJjcYS7YTGVXHJjtXwDtUJ\n8ve1KAvy92V4h+r51CKNJn/RTmg0lmgnNK5KvuUKzI6MhYd6t4dGY0I7odFYop3QuCou2bECkzRa\nEE1e8aTt2NoJTV7xJB9AO6HJO45wwmU7VhpNXtHbsTWaLLQPGo0ljnLCJddYaTT2QG/H1miy0D5o\nNJY4ygmXnLHytOlqTf7gSduxtROavOJJPoB2QpN3HOWEy81YZUzNxV9OQJI1NRcVG5/fTdO4GZ6y\nHVs7obEHnuIDaCc09sFRTrhcx8rW1NxrC3ZSMWIlDcb+quXR5ApP2Y6tndDYA0/xAbQTGvvgKCdc\n7lFgTlNwl24mM3zxLkAvuNRkj6dsx9ZOaOyBp/gA2gmNfXCUEy7XsSobHER8DtIkp0oio+O0MJoc\n8YTt2NoJjb3wBB9AO6GxH45wwuUeBRpNzRnhrgsuNZrbRTuh0ViindC4Mi43Y2U+NZfdiMQdF1xq\nNHeCdkKjsUQ7oXFlXK5jBVlTc1Gx8QxftIvkNGlx3N9XuOWCS43j8PSt19oJze2indBOaLJwpg8u\n2bHKIOOHfmfZPi4nJANQvKA/Yx6r7VEfEJq84U0RpbUTmtygndBOaLJwtg8u3bECz1lsqXEc2UXP\n9cR7RzuhyQnthEaThbN9yHHxuhDiKyHEWSHEXhvHhRDiQyHEISHEbiFEQ7u3UqPJBmdHlNZOaFwd\n7YRGk4WzfcjNrsA5QMdsjncCqqb/ewH4NO/N0mhyTz5ElJ6DdkLjwmgnNJosnO1Djh0rKeV64GI2\nVboA30gTW4BgIUQZezVQo8kJo63X/j6Cm0kpVIpYSdjEtXaNwqyd0Lg62gmNJgtbEdYfqFGSsIlr\n7e6EPeJYhQDHzV6fSC9TEEK8IISIEULEnDt3zg5vrdGY1ldM6FqHkOAgBBAc5A/CFH05n/KIaSc0\n+Yp2QqPJwtqHkOAgujUKYcmOeIfkm3RqgFAp5SwpZaiUMrRkyZLOfGuNhxPeIIRNEe04MrEzhQL9\nSE613HqdsVDR1dBOaByFdkKjycLch00R7fj973M2F7TnFXt0rOKB8mavy6WX5Z0LFyAx0S6X0ngP\nzl6oaIDjnDh6FJKS7HIpjffg0U4cOgRpaXa5lMZ7cKQT9uhYLQP6p+/6aAZckVKeytMVb96ECROg\ncmX45BM7NFHjTZgvSHxpyyLqn4xTyh2M/Z04exZefRWqVYPZs+3SSI33kHnvS8mYNZ/T7Nhuy3LH\nY38n4uPhhRegRg34/nu7NFLjPWTc+0Km8X70xzSMP2BRnhdyjGMlhPgeaAuUEEKcAMYA/gBSys+A\nVcAjwCHgJjDgjluTkgJffQXvvAOn0p17/3149lkoVuyOL6vxLh6oUZJ5W45R68y/vLluLgCrq7fA\n5/1xdrm+U524dg2mToUPPoDr101l774L/ftD4cJ5+Ck03kJUbDw3ElMAaHPkLwbsWM6AHcvZcF8j\nUt5zQycuX4ZJk2DGDEhIn10YNQq6d4fAwDz8FBpvwdyJzn9vpM/OX+iz8xfWVGuOsMP3hJBS5lzL\nAYSGhsqYmBjLwn37oE4dsG7TqFHw3nvKNTw9ZYPm9oiKjbeIvjxn4RjaHtmRVcHHB4YNM30oWyGE\n2CGlDHVWW40wdCI2FhoahPwZOxbeflsp1k5ozBkVtYd5W44hMY3MV8x5jdpnD1tWiogwPSGwwmWd\nWLcO2rZVK8+YYZrVtUI7oTHH3Am/1BRWf/kSlS6ZTZ4KAePGwVtvKefm1gmnLl7Pkdq1oV8/tXzq\nVDh92qIoI0S9I1b0a9yPjPsho1PV7Nhuy04VmNZhVKiQD63LAw0aQK9eanlkJFjtmNJOaMyJio3P\n/AIB08hc6VQBNG7s1HblmTZtoFMntfy99+DqVYsi7YTGHGsneuxZY9mpAtPETtOmeXof1+pYgWkk\nHhBgWXbzpqncjOxC1Gu8D4v7QUreSH8EaMF998Hzzzu3YfZg3Djws3pqf+2a6TG5GdoJjTmR0XGZ\nXyB+qSkM3fCtWqlxY3jiCae2yy5MmGCaWTDn/HmYMsWiSDuhMcfciQLJtxi8ab5a6cEHoX37PL2P\n63WsKlSAV15Ry7/4Av75J/OlC+xy0eQTUbHxSlA387/7Q4e20vCkwQenUafdHahcGQYOVMs/+QSO\nHMl8qZ3wXnJyouee1erIHGDiRLWD4g7UqwdPPaWWT5kCZ85kvtROeC85OfH0Xyu457pBTNvx4/P8\n3q7XsQLTs82iRS3LUlJMa63SyYeUDRoXwNbUfnBBfwB80lIZtv4b5bwrVWtC795Obq0defttKFTI\nsiw5GUaPznypnfBOcnLCNDI32DX34IPQrp1zG2tP3nsP/P0ty27cMM3wpqOd8E5ycqLoresM2rxI\nPbFbN7s8GnfNjtXdd8Obb6rlCxdC+kJGWyHqh3eo7owWavIJW1P7Upr+/uH7/6D6+WPKecWmTjYt\nXndXSpeGoUPV8nnzYNcuQDvhreTkxDM7VlDaQSPzfKVSJXjpJbX888/hsGktmXbCO8nJiYFbl1As\n8YblST4+Fp3yvOC63zSDB8M996jlERGAcYj6CV3r6N0eHo6tKfwrCclMerQaw42embdsCZ07O7hl\nTmDoUChRwrJMyszdK9oJ7yQ7Jz54sDyDti5WD3bv7n6L1o0YOVINO5KcnLljVjvhnWTnxNRWpXh2\nx3L14IABpphodiDHOFb5RqFCMGaMOiL57TdYvRoeeojwBiFaEC+jbHAQ8QbSlA0O4vGtK+DyGfUk\no4Wu7kjRoqYvktdftyxftQrWr4fWrbUTXkh2TnSOnge3rlse8PW128g83ylVyhRC5Z13LMvnzzeV\nN2ignfBCsnOi009fQvItywOBgab+hp1w3RkrgOeeg6pV1fI339QpDLwUW1P7I1qGGH9ZPPqoacbK\nU3jpJeOQEW++qcZ/03gFtpwY1ai4KbaTNc88A9U96FHYkCGmDpY1I0Y4vy0al8CWE2NqF4BZs9QT\nXn4ZypdXy+8Q1+5Y+fsrW8oBU9DEhQud3x5NvmM9tR8c5E8Bfx8OjnhPieuEEMb3jzsTGGgYLJct\nW+Cnn5zfHk2+Y8uJcxFvm0LVmBMYqM7uuDtFihgGyyU6Gn7/3fnt0eQ7tpy4MWKUaSOcOUWK2L0T\n7todKzCtBQg1CHQ6cqRORuulZGQpn/ZkfRJT0hDnz/N/25aqFfv0gbp1nd9AR/PUU6YMBda89Zb6\noaHxCqydKHzyOL13/qJWfPllKFfO+Q10NC+8YIpTZ42eyfVarJ0offQgXfb9oVYcPlxdu5pHXL9j\nJYRhChIOHzae0tN4DRk7PwZtXkiRJKvn6f7+ppx6noivr2EKEg4cgG/UUBMa7yHDiSEbvsM/zXJX\nFEWLeu7jsYAA45nc7dthqcGgS+M1ZDgxbP03+GDVyS5ZUl2zagdcv2MFplgrDz+sFN8a825WYlqN\n13HycgJlr56lX+xK9eDAgcYjWE/hkUegdWulOGHEyKzEtBqv4+TlBGqePUyX/evUg8OG2X1k7lL0\n6gX16yvF14a+oWdyvZiTlxMIPbGPB//drh4cNcohyezdo2MF/P7MEKWswMXzTOs4MDOqqsa7KBsc\nxGsb5xOYavmhmeBfwCKYrEciBOueVeNaBZ09zfhHXtZOeCllg4MYtv5bZWR+qVCwQ0bmLoWPD38+\nP0wpLvLfYUY8+rp2wkspW6yAYYqzU8GljTNa2AG36ViN+s+fn2q2Ucr/b/uP3Io/pRNreiFjqwq6\n7V2rlB97eqApoKaH89apwkRXbaaUD9qyiGunz2knvJAJpa7Q3mBkfnzQ6w4Zmbsaw6/ew5/3qusq\nX9s0nwvnLmknvJAPCsfT5MR+pfzk6xGmzRwOwG06VicvJzClVV+SfSy3UBZOSuCVzQt0Yk0vpP28\nj/CVlmE3kooFU/0DD11bZcXJywlMbv00qcJS4+Bb13lpy2LthLchJa2/mqIU3yxTjrrvGWSy8EBO\nXrnFxLbPKOWlr1/k2Zhl2glvIy2N5rNVJ67eV41GI//nsLd1m45V2eAgjhUvw7z6nZRjfWJ/pvzl\n0zqxpjexdSv8+KNSHDBqJBQrlg8Ncj5lg4P4t0R5FtV5UDk2YMcySl87r53wJlatgk2blOKCE8Y5\nbGTuapQNDmJ3mWqsrB6mHHtx6xKCE65qJ7yJH36A3buV4qJTJpk2ATmIXHWshBAdhRBxQohDQogI\ng+P3CiF+F0LECiF2CyEesXdDh3eojgA+atGL6wGWCTQD0lIYsuE7nVjTW5DSeHdTSIhpO7kTcCUn\npoc9xS2/AItjBVKSGLzpe+2Et5CWlpnayIJataBvX6c0wZWc+KB1f1KsZnKLJt7gpS2LtRPeQlKS\nRZL6TJo2hS5dHPrWOXashBC+wEygE1AL6C2EqGVVbRSwUErZAOgFfGLvhoY3CKFPs3u5WCiY2Y3D\nleNP7P+DcRX1zg9PJyo2ntefizQO/PfOOxDk+A9NV3PiTNESzGn0mHL8yd2rebea40ZlGtcgKjae\nd55623BkzvjxDh2ZZ+BqThy9K4QF9dSd5M/sWM7oup6/1szbiYqNJ7LnG/Dvv+rBiRMdnuIsNzNW\nTYBDUsrDUsok4AfAursngaLp/y8GnLRfE7MYF16HaU/WZ+VDT3G+oPq454E5Ux3xthoXISo2nreW\n7OLZVWr8smMlyvFTvYec1RSXcyKqQz+uBBayOOYr03hw3oeOeFuNixAVG8/oRX8xIPor5dje8jWJ\nKt/IWU1xOScWdhpAgp/lI9DA1GQ6LP7MEW+rcRGiYuMZ+8N2nl6jxvTbWjWUqGIGafLsTG46ViHA\ncbPXJ9LLzHkH6CuEOAGsAhy2Kiy8QQirxzxKiYkGweB0CgOPJjI6jgf2rKfOGXUUMiGsLxHLDjhr\nx4/LOfHLu10o9q5BWo+lS03r0TQeSWR0HI/H/EyFy6eVY++17M+IH/d6rRM/je9J0HA1TA9z58J+\ndZeYxjOIjI6j15YfKXXjknJsbIu+TtkZaq/F672BOVLKcsAjwLdCCOXaQogXhBAxQoiYc9Z53W6X\ngQOhUiW1XKcw8FjOXrjG0A3fKuW77qnKz9XDXG3Hj/OdePVVKFtWLY+I0E54KJfOXmLwn98r5esq\nNWTrvXW0E2+8AXfdZVmWlua5Eeg13Dh1lhe3LlHKV9Roxb57qjjFidx0rOIB87TP5dLLzHkOWAgg\npdwMFACUEL9SyllSylApZWjJkiXvrMUZBATAuHFq+fbtsET9pWrcn+f/Xcd9l9SnB5PbPJ35zNxJ\nO35c04mgIOMEu3/8Ab8Y5I3TuD2v7v+ZkjcuK+WTW/fP/L9XOxEcbNyJWrbMcAelxv0Zuusniibe\nsChLET5MaZW1icPRTuSmY7UdqCqEqCSECMC06HCZVZ1jQHsAIURNTMLkcaiRC2ykMGDkSEhOdvjb\na5zH8j8PMcDgmfnGCvXYVDHrHnDSjh/XdWLAAKheXS0fMcI0Utd4DCv/2EufP35Qypenj8wz8Hon\nXnkFypdXy/VMrsfxS3QMPTapuSEX1n2YI3dlPZl2tBM5dqyklCnAK0A0cADTro59QoixQojH06sN\nBf5PCLEL+B54Rkon3LE+PqYV/tYcPAhffunwt9c4h6jYeOLenkCpaxeUY5PbPJ35/yB/X4Z3MOhU\n2BmXdsLPz7QTzJpdu+B79ZGRxj2Jio3n1FvvUiSHkbl2AihQwDgh+8aNsNIgz6jGLYmKjefyW2Mo\nkJJkUX7LL4AZYb0yXzvDCeGM+9qI0NBQGRMTk/cLSQkPPghrrVKb3HMPHDoEhQoZn6dxGzqMWcaC\nyX0IvmWZcHtNzTDG9B9rSsYcHMTwDtUJb2C9XjZ3CCF2SClD7dHeO8WuTjRvri5ar1QJ/v7b9Bhd\n49Z0eWshCyL7KV8iSxp2YmqPYdoJa1JToW5dddH6/ffDzp1OCUmhcSxPDvuGeVMH4GeVjWNui+7M\neuwlpzrhd0dXdyWE4I8BQ2hr3bE6fRpmzDAOmqdxKx5fPU/pVKUKHyaE9WVTRLt8apULIwQbnxtK\ny609LcuPHIHPP4f/OS6Vg8Y59Pz5a8OReWSzJ9minVDx9WXL80NpNuQ5y/K9e2HePOjf3/g8jdvQ\nZ9WXSqfqamAhpoV2Y6eTnXCblDa2iIqN56U4X1ZUb6kenDQJLqiPjzRuxKlTPBtjvVQDFt/fnluV\nq+VDg1yfqNh4/u9YEf6oZBDD6L334No15zdKYz/++Ycnd/+qFM9p+Ci+RmuJNETFxjPgQhliQmqq\nB0ePhsRE5zdKYz9iY3n8wHql+PMmXSlUppTTm+P2HavI6DgSklOZ0rqfksKAq1dhwoT8aZjGPowb\nR1DyLYuiRF9/PmvbzylrR9yRDCcmtX2aNKwiDJ87B1PUpKQaN+Ltt/FLU0fmc1r10k7YIDI6joSU\nNCaZrcnM5L//4NNPnd8ojf0weDJ1rlAw3zfvmi9OuH3HKmPb5BEbKQz46CM4dszJrdLYhX//hVlq\nlPUlLcIZPKDdHT8n93QynDhQ6j5+qtVGrTBlCpw96+RWaexCbCwsWKAUz2/bi4g+LbQTNshwYnv5\n+1lTubFaYdw4uHLFya3S2IV16wzDycxt35/RvRrnixNu37Ey3zY5PewpbvpbZXFPSoIxY5zcKs2d\nEhUbT9jEtVSKWMmv3QZCilX+xyJFeGrpJ/oLJBvMnZjSqi9JPlZLKa9fN44Bp3FJzJ3Y3GugWqF0\naV5cMkM7kQ3mTkS2MZjJvXABPvjAya3S3CmZTry5gj39B6kVKlVi2KLIfHPC7TtW5tN85wrfxZeh\naoJm5s41LVLUuDRRsfGMWLqH+MsJ1Dh7mId3/aZWeuMNKKHEFNSYYe7EieB7mNegk1rps8/g8GEn\ntkpzJ5g70eTYHpof3K5WGj1a737OAXMn4kpW5Mf7H1ArTZ1q2vSkcWnMnWj37zbqHDNIT/Tee/m6\n+9ntO1bhDUIoXtA/8/Wspl25GFTUspKUOoWBG5CxNghg+Do1GCilSsFrrzm5Ve6HtRMfN3+S6wFW\nAfGSk+Ftg9yCGpci0wkpeWPdXLXCfffB8887v2FuhrUTU1v2JdHXaib35k0YO9bJLdPcLhlO+KSl\nGn9P1K0LvXs7v2FmuH3HCmDMY7UJ8jfFIbkWWIiZzXqolVasMAWE07gsGesgmhzfS7vDBrFrRo2C\nwoWd3Cr3xNyJC4WC+aLxE2ql+fNNMXw0LkuGEw8e2kajk3+rFcaO1XHJcom5E/HFSvFtg85KnbQv\nvjDFP9S4LBlOdNm/jhrn/1MrvP++KXh4PuIRHavwBiFM6FqHkPTn6N817Ex8EYMcUzpBs0tTNjjI\n9si8YkVT4m1NrrB2YnbjcM4XLKZW1DO5Lk3Z4CB80lIZtt5gZF6nTr6PzN0JaydmNu/J1YCCFnV8\nUlJMAziNy1I2OAj/1GSGbJynHgwLg85qh9nZeETHCkzSbIpohwAS/QKYapbWIZM//zQl39S4JMM7\nVKfT0RhC4w+oB/P5mbk7Yu7EjcCCfNSil1rpl1/g99+d3jZN7hjeoTo94jYYj8zHj8/3kbm7Ye7E\npYLFmNW0q1ppwQLYscPpbdPkjuEdqtN/z6+Uv3JGPThhAgihljsZj7MyOP05+o+12/J3iQpqhbfe\nMqU30Lgc4XXvYeJfalLZK1Vq0PLYPVSKWEnYxLVExcbnQ+vclwwn5tfvyLFipdUKOhmtyxJeuySj\nY9TwChfqNyZsT5B24g7JcOLL0HDOFQpWK+iZXJclvGoxhm9fpJSfDnuAsE3JLuGER3WsomLjuX7L\ntD0/zcfXIkFvJvv3wzcG0+qa/Gf+fIodilOKIxr14sTVRCQQfzmBEUv36C+SXGLuRLKvv0WC3ky2\nbYOlakZ4jQswaxaFTh5Xil+t25P4K7e0E3eAuRMJAQWY0cLgcerq1bBmjZNbpskVM2ZQ4OJ5pfjF\nWt2Jv5zgEk54VMcqMjqO5LSskffayo3ZVq6WWnH0aEhIcGLLNDmSmGj6u1ixu0Jtfq5gmZolITmV\nyGi1A6ZRsXZiWa027Ct1n1rxrbfUmGGa/OX6ddMjcCv+rN6UTWUsU7NoJ3KPtRM/1OvAkeJl1IoR\nEWAV4V6Tz1y4AJMnK8W/1mvHzrssn1DlpxMe1bHK2C2QiRBMbDNArXjiBMyc6ZxGaXLHrFlw9KhS\n/H5YP8Nn5srfWmOI9e9JCh/jmdyDB+Hrr53UKk2umD7dMEL+uBZ9DKtrJ3KH9e8pxdePKa36qRV3\n7IDFi53UKk2umDjRlKrOHD8/xjc1WD9K/jnhl3MV96FscBDxVr/Iv8rVZHXVZjz0zxaL8itvv8uj\nF+7jhAykbHAQwztU15GL84tr1wxH5huqNmFr+fsNTzGPpKyxjZET6yo1ZPO9dWl+bLdF+dkhEXT5\nrzSnU3y1E/nN+fMQGakUr6rzAPuNZhzRTuQWIydW1mjJwG1LqXPaMtTCsZdep9u+wpxPlNqJ/ObE\nCVOKOisW1u/I0eJlDU/JLyc8asZqeIfqmXFKzJnUuj+pVgmai926zlO/f+8Sz2O9nunTTcmBrRjf\n0mA9EBDk76uTzeYSQyeEYKLBrFWp6xcJ37hUO+EKGIzMk318mdj8KcPq2oncY+SEFD5MbPOMUvfe\niyfpsGWldsIVePdd05IRMxL8Aols2tOwen46kauOlRCioxAiTghxSAgRYaNOTyHEfiHEPiHEfPs2\nM3dYxynJ4FCJe1l8f3ul/oAdyyh9zbQITq9RyCdsjMyjarXhgMHI3FcIJnStk++jRnd3YlfZ6qyq\n1kKp/9KWxRRLuAZoJ/KNEyfg44+V4h/qdeCYwVog7cTtYcuJTRXrs6FCfaX+4E3zKZhkmuHSTuQT\ncXGGSxW+Dn2Mc4XvUsrz24kcO1ZCCF9gJtAJqAX0FkLUsqpTFRgBhEkpawP5lnckI06JtTTTWvbh\nlp9lHKQCKUkM3vR95mu9RiEfmDDB9CjQjGQfX6bamK1Kk9IVvkA8wokPWvcnxWomt2jiDQZtydrK\nrJ3IB2wXONBUAAAgAElEQVSMzD80ikOGduJOsOXEpLbPKHVL3rjMszE/Zb7WTuQDb7+thEm6EliI\nz5p2N6ye307kZsaqCXBISnlYSpkE/AB0sarzf8BMKeUlACmluuLSyVjf/KeLlmBOw0eVek/uXk3l\nC6btzHqNgpM5dsxwE4GtkTm4zN/II5w4fHc5FtZ9WKn3zI7llLlqejTrIr9v7+Hvv+Grr5RiWyNz\ncJm/kUc4sfeeKiyv0UqpN3DrEorfvAK4zO/be4iJgUVq3KrPmnXnagHjFGf5/TfKTccqBDAPpHIi\nvcycakA1IcQmIcQWIURHezXwTjH6xX7arAdXAi2zwPvKNIat/1avUXAyUbHxLO82UBmZ3/S3PTL3\n9xWu8jfyGCemh/UmwS/QoiwwNZnXNs7XTjiZqNh41vYYqGzxz25krp3IG0ZOfNC6H8k+lmuwiiQl\n8PLmhdoJJxMVG8+23i8q5WcK38XXjR4zPMcVnLDX4nU/oCrQFugNfCGEUMLZCiFeEELECCFizhks\nVrYnRgsUrwQV4VODBM2dDv7JZ5WT8n063dOJio0nbOJaKkas5OOZy3lkx69Kna9CuxiOzIsX9Cey\nez13+hu5hRNni9zN16HqB1T3vb/xcf1Ad/p9uyXmTnw1fRHt9q5X6nzarIfhyFw7kXeMnPiveFl+\nqNdBqds/dhXTmxV3p9+3W2LuxMLJc2lySE0v9GGLXtzyL6CUu4oTuQm3EA+UN3tdLr3MnBPAVill\nMnBECHEQk0DbzStJKWcBswBCQ0MdmkMj4xcbGR1nsbX260aP8fSO5ZS5fsGifpuvp8DTj7lEniFP\nJCo2nhFL95CQbHpOPnTDt/hKy5H55QKFmdUkK3dXkL+vSyzKNcCjnPisaXee2vkLwbeuZ5b5yjTa\nf/chdHvAkU3yaqydMEq0fKbwXcxplLWEQTthX2w58WGL3nTb+xsFk7Nm1ANSk+mw6FPo3NSRTfJq\nLJyQkjfWzVXqHA0uwwKzJQyu6ERuZqy2A1WFEJWEEAFAL8A6k3EUplEIQogSmKZ8D9uxnXeEecLN\nDBL9A5ne0mDL8vr18PPPTmubtxEZHZf5BVL31EE6HfxTqfNJsx4UuackAggJDnI5WczwKCeuFijM\nzGYGW5ajomDzZqe1zdswd6LF0Z20Phqr1JkR1pu7SxbXTjgQIyfOFS7O7NBwtfI338CePU5rm7dh\n7kSHfzZT/9RBpc6UVn0pfXcRl3YixxkrKWWKEOIVIBrwBb6SUu4TQowFYqSUy9KPPSyE2A+kAsOl\nlBdsX9W5WAeEW1znQf5v249UuXjCot6BZ17m/177gmGdarrcH8rdMV8kajQKOV34Lla368GmiHbO\nbNYd4YlOfNPoUQbsWEbZa5Y5uLY++QJDXprO8I41tBN2JtMJKXljverEkeJl2Njqce2Ek7B2YlbT\nbvTd+TN3JZjFE5OS3554jtHPT9TBQh1AhhO+aakMW/+tcnxfqfuIbfawyzuRqzVWUspVUspqUsrK\nUsr308tGp8uCNDFESllLSllHSvmDIxt9u1g/R0/18WVGu2eUejXPHSV08y86CJwDyFgkGnZ0Jy3/\n26Uc/zDsKY7cSMv3rOS5xdOcSPQLYGYbNcRF0+N7qfrXBu2EA8hwosPBzdQ/9Y9yfGrLvhy7lqyd\ncBLWTlwPLMislupGmvb/bqfM3hjthAPIcKLr3rVUvaAmH49s3Z8TVxNd3gmPirxuC/OAcAIIDvJn\n4/0t+ausunNg6IbvSE24pYPA2ZnhHaoT5OfDm+vmKMf+vSuEBXUfAnR0Y2dh5ER0w4f55+7ySt03\n180lMTFJO2FnhneoTiFfGLbBeGS+oqZp2792wjkYOfFj08eIL1pSqRvxxxwSklK0E3ZmeIfqFBOp\nDN6kxo7dWv5+/rivEeD6TnhFxwqynqNPe7I+iSlpXEpIYWJbNUFz+Stn6LNzlQ4CZ2fCG4Qwt9gx\n6lrl4gLTyDzVbHuzjm7sHKydOJ+YRmTr/kq9mueO0mX/Ou2EnQlvEMK3AQdtjsylWfBW7YRzsHbi\nTLIwDFYcGn+ABw9t007YmfAGIXyXHEu5q+pu0Emtn7bYXObKTnhNxyoD88Vx28rfz2+VGyt1Xvlz\nAVUKpCnlmjyQkkKT2VOV4t33VGFVjTClXH9gOQ9zJ36t2owdZWsodYZu+I4KhdU8nJo8kJhIw6+m\nK8VbzEbm5mgnnIe5Ez/WbsvfJSoodYavn0u5ogFKuSYPXLtGnblqOqfVVZryV7maSrmrOuF1HSvr\nP8TkNk+ThmWIhbsTrvLRyd+c2SzPZ84cOKju8Jjc+mmLkXkG+R0515uwcEIIw7Qe5a6e5cMrW53X\nKG/gs89M2QesmNzmacOwL9oJ52HuRJqPr+lvYkX188eYkbzXmc3yfKZONeWPNSMNQWTrfobVXdUJ\nr+tYWf8h4kpW5MfabZV6NeZ9AadPO6lVHk5CArzzjlK8qUJdNlZUk54KyPfIud6EtRO2ZnLrfv0R\nXL2qlGvugGvXYNw4pXh1lSb8FaKOzLUTzsXaibWVG7OtXC2lXsPZU+HWLWc1y7M5dw6mTFGKo2q3\n5WDJikq5KzvhdR0ro0i701r1JdHXKvLEzZvw3ntObJkHM3MmxKuLDCe3Nh6ZS9DbmJ2IkRNGM7lc\nuAAffODElnkwNkfm6ho30E44G8UJIZjYRl2Ty4kThvlONXfAhAmmAYcZST5+TG3Zx7C6KzvhdR0r\n850fGZwoVprvGnRWK8+aBYfUxdaa2+DyZRg/Xin+o3YrdhnsygSUjPMax2LkhK2ZXKZO1TO5eeXc\nOcMOanSDBw1H5qCdcDZGTvxVriarqxhEXR8/3vQ5p7lzjh0z7KAua/ooJ4LvMTzFlZ3wuo4VZO38\nMP/DfNy8J9cCrP5QKSkwapSTW+dZxA0bA5cuWZSlCh9S3h3L9CfrKzMlOslp/mDkhOFM7o0beiY3\njxx6fSRcv25Rluzrh+/Yd7UTLoSRE5Nb9yfVek3oxYswebKTW+dZ/PfqG5CUZFGW4F+AQu+Odksn\nvLJjlYH5dO+lgsX4vGk3tdKCBbBDTQKpyZmfV8dS/pvPlfLF97fnfztN6xLM48a4anoCb8LcCT2T\na3+iV23j3h++Vsrn1evI4K1XAO2Eq2HuxD8lK7DkfoOo39Onw8mTTm6ZZ7BmyR+UW7ZIKZ8d2oUh\n688A7udEbpIweyzmCThPXk7g5wd78cr+aApcsIqhEREBq1fnQwvdm5uj37VIYgqQ6OvHjJa9M2OQ\nbIpo59KCeBvWTizp+DT9D/yG/w2zGZaUFHj7bfj++3xqpfuSPHoMAakpFmU3/AvwcYsntRMuirUT\n3z/yHN3iNuCbZPbZlpAAY8eadnpqbgu/MaPxlZbhjS4VKMKspl3d1gmv7liBSRqLP1jJd2HQIMtK\na9aYOlYPPeTcxrkzhw/z+LYVSvF3DTpzsmgpwHVjkHg7ihMBb8Do0ZaVfvgBhg+Hhg2d2zh3Zv9+\nOv31q1L8VWgXzhcqDmgnXBXFiZQYdQfb7NkwZAhUq+bcxrkz27bRdt8GpfjTZt25FlgIcE8nvPpR\noCHPPw9VqijFl18dCmk6aGiuGT0a/7RUi6JrAUHMbN4z87WrxiDRWPH661C6tFJ85uUh+dAYN2bU\nKGVkfrlAYWY17Zr5WjvhJowYQXLhopZlqal6Te7t8tZbStGpwnczt+Gjma/d0QndsTIjKjaesCkb\neLmWutYq+O89bJ+sp3lzxa5dMF/N9fRFk65cLFgMcP3FhxoTUbHxhH28jVF1uyrHSm9Zx8bPFuRD\nq9yQbdvgxx+V4pnNemaOzLUTrk9UbDxhE9dSMXIL0xqGqxUWLYLt253fMHdkzRr4TQ3EPSOsN4n+\ngYD7OqE7VulExcYzYuke4i8nsKpGGLvvUWetykS+r+xc0BgwciRIaVF0vmAx5jQ2fRC5w+JDjaUT\nP9TrwNHgMkqdEuNG65ncnJASRoxQik8Vvpt5jUwjc+2E62PuA8BXoY9zpvBdasU331Q+/zRW2HDi\n37tC+LGuacmNOzvh9WusMjDPDSWFDxPbPMP8BZbTuuUunjQ9R7deg6XJYsMGWLlSKS4xYSy7X+2e\nDw3S3CnmTqT4+vFB6358vMxyW3mN+IOweDH07Gl0CQ2YRuZr1yrFZaZNZP/zT+RDgzR3grkPALf8\nCzA97CkmRFvltvv9d/j1V+jQwcktdCOWLIGYGKW48mfTiOvxeD40yL7oGat0rBfI/VmxPusrNlAr\nvvuuEoNGYyLqrxPs6mfQ6axQAQYOdH6DNHnC2omVNVqyp3RlteLIkZCc7KRWuQ9RsfGETfiN3f0N\nnKhWDZ55xult0tw5RouoF9Z9iH/vMphRiYjQM7kGRMXG0/r91fw78HX1YMOG0M0g5JEbkquOlRCi\noxAiTghxSAgRkU29bkIIKYQItV8TnYPRArlJBok3OXsWpk1zQovci6jYeKInf0m9/wySko4dC4GB\nzm+UA/FGJ6TwYVKbZ9SKhw7Bl186p1FuQsZjo7pb11D3tEHMr3HjwM+zHhh4uhNG3xGpPr580Mog\nQfDOnaYYiJpMMpxotnEFlS+eUCtMmAA+njHXk+NPIYTwBWYCnYBaQG8hhJKNUghRBBgMbLV3I52B\nUb60/fdUYVnN1krd6+Mm0HnUEqJi1fx33soHPx/g1bVzlPLDpStCH+NcT+6KNzuxqVIDNlaop9Q9\nO+wt2o9dqZ1IJzI6jqTEJIZt+E492KiRx4zMM/AGJ4x8EMDP1cPYX05dYP3foCG0GRetnUgnMjqO\ntJs3eW2TurGJBx7wqHBGuekeNgEOSSkPSymTgB+ALgb13gMmAW6Z6jsjN1RwkH9mWZC/D188PIBk\nH0uZCicl0P2XuYxYukdLk07o5l+oee6oUj4xrC/4+qonuDde7cSnHZ5X6pa6cYmOaxZoJ9I5eTmB\nbnt+Mx6Zjx/vMSNzMzzeCev8gb5CIIHgggFMe/BZpX6Fy6dps+5H7UQ6Jy8n0C92JWWvnVcPjh8P\nQqjlbkpu7A4Bjpu9PpFelokQoiFQXkqprlp2MxJTsp6L30xOY0+Bksyv31Gp1yf2Z+4+F09kdJwz\nm+eS/LTtCEMMRuY7ytZgX2hb5zfI8Xi1E5uKV2JFjVZKvYFblxB49ZJ2Aijtn2Y4Mt9xX32PGpmb\n4RVOhDcIyZy5Sk3f+Xc5IZnVpWuzrpIaLPd/fy5A3LiunQDK+SQxaMtipXxdrTBo1iwfWuQ48jxs\nEkL4AFOBobmo+4IQIkYIEXPu3Lmcqjsd610fGXzUohc3/AtYlAWkpTBk4zy3jAprT6Ji49k95gPu\nvXJGOTa9/bMM71gjH1qVv3iDEx+06qvM5BZNusnLmxdqJ2Lj6fLnT4Yj8+tjxnrUyDy3eIMTRusP\nS968zPPbo7QTsfE8uX4hdyVctShPFT6kvDs2n1rlOHLTsYoHypu9LpdelkER4H7gDyHEUaAZsMxo\nYaKUcpaUMlRKGVqyZMk7b7WDsHXzny9UnNmN1W3R4fv+oFWCdyfe/HjZTl7coI7M193XiG6vP+WW\nMUhygdc7cfSuEBbUfVgp7//XChpw1eAM7+GTn3bw4p8LlfK1NVrQpv9j+dAip+D1TuwvfR8/1Wyj\nlL+wbSm1/BINzvAeZi/ezIBtUUr5yrrtad/dIKm1m5ObjtV2oKoQopIQIgDoBSzLOCilvCKlLCGl\nrCilrAhsAR6XUqpBKlyc7ELnf9HkCc6nRw3PwAfJ5L9+cHSzXJqOvy2g5I3LSvmk1k97aqcKtBOA\nKULyTX/L3Z6BqSlM269+gHoTj/06n+K3rlmUpQofJoT1zacWOQXtBDDFYCa3cFICHx5e5ehmuTTd\no7+hULLlsrpEXz8mN++dTy1yLDl2rKSUKcArQDRwAFgopdwnhBgrhHD/SF5mGO36yOB6YEE+bdFL\nKb9n41pYt87RTXNNLlzgxW1LleKfarZhf+n7CJu41iMXbWonTJwrfBdzGqvrkyusXAz79jm6aa7J\nmTM8t+MnpXjJ/e34p8S92gkPIDsnjhUvww/1OynllRd/A0ePOrhlLsqRI/TZ+bNS/F2DzpwoVsoj\nncjVGisp5SopZTUpZWUp5fvpZaOllMsM6rZ1x1EIWO76EEBwkD/FC/ojMIXXrzfuDahUST3RW1MY\nTJxI4cQbFkXJPr5MbWUKrxB/OcFjd8RoJ0xO3DvhHbjLKq1HWpphclVv4N/XRlAwSR2Zzwh7CtBO\nmNX1WCdKTHoPChWyPCk5GUaPzo/m5jvHXn0D/9QUi7LrAUF80qwH4JlOeFaEOjsQ3iDE8BFWVGw8\nk6LjWFu7K9OPTLE8uHWrKcFqVzVRrcdy4gSpH36E9bjth3od+K942czXCcmpREbHefJjQY8nOycm\nRMexq144I3//yvLgsmWwaROEhTmplfnPryu30Hbht0r5dw06E1+sVOZr7YT7k50T46Lj+KfeY7z6\np9Uyke++g2HDoG5dJ7Uy//lt0W88sGKJUj67cTgXCgVnvvY0JzwumIojME+++VOtNuwvZTBr9dZb\nkJKilnsq776Lb5LlgswEv0A+NHhc6u07YjwRcye+afgo8UUMFhl72Uxu6tujCUhTR+Yzm6t5FLUT\nnoe5E7OadOVCUFHLCjYSD3syAWNG44PlZ8CFoKKGm8E8yQndscoF1gmaDdN6xMUR++5UwiaupVLE\nSo98bpxJXBx89ZVS/HXoY5wzyPYuwbN/H16IuROJfgFMa2UQXX/TJrbMmOsdTuzdS4fYNUrx7Mbh\nXLTa9ALaCU/E3InrgQX5uMWTaqVVq9gwe4l3OLFlC60O/KkUf9K8J9cDCyrlnuSE7ljlAuue9LpK\nDfnzXnU6N2T6JC6cu4TEM58bZzJqlJJg9HKBwnzWtLvNUzz69+GFWDuxtPYDxJW4V6lX4v0xnLp4\n3SucsB6ZX0wfmduKWuXRvw8vxNqJefUf4Xix0kq9Iu+MIv7STc92QkpTImor4ouU5LsGj3i8E7pj\nlQuCC/pbFghhmKC51PWLDNixPPN1xnNjj2L7dlisRs/9rGl3rhYojL+PoLj17ysdj/x9eCFRsfH4\nWAW5TPPxZbKBE1XOH6Prvt8zX3vkPbB5M/yk7gSc2awHqYWL0KfZvZlpUKzxyN+HF2LkRJKfP1Na\nqSE26sf/zcP/bMl87ZH3wK+/Gu6Wn96yNz5BQR7vhO5Y5UBUbDzXb6lrp/aXr0F8+0eU8pe2LKZY\nQlYMG096bgwY7vY6V/Ru5jZ6lJDgICJ71CN29MM2RyQe9/vwMjLWkaQarJ36s0ZzLtRvrJS/vmEe\ngSlJma896h6wsW4mvkhJ1j7QnQld6zAuvA6bItppJzyU7Jz4tV47rlStqZS/sW4uvmlZ0ds96h5I\nSzN04tBd5dga9qhXOKE7VjkQGR1HcpoqTKEAP0JmTlUSDBdNvMGgLYsyX2cXTM7tWLPG9M+KkpPf\n58CUbmyKaEd4gxDD0VsGHvX78EJspfPwFYIJ3epy98fTlGMh187R96+s9HAedQ/YGJmHzJjE7293\nzNzlpJ3wXLJzYny3ehSb/oFyrMrFE3Tb81vma4+6BxYvhthYpbjKFzNYP/Ihr3BCd6xywFbP+UpC\nMlSvzvb26u6GZ3Ysp8zVcwT5+zK8Q3VHN9GuRMXGGy6sjPrrBAeeeUU9oUoVePZZi/Ntjd7c8feh\nscSWD2lSmj4ww8I40FhN6/HK5oUUSbzhlveATSd2HCfuWQMnatSAfv0sztdOeC45OtGpE0dqK5l7\neH3jPAKTE93yHrDlxE/bjnJs0BD1hMaN4YknLM73ZCd0HKscKBscRLyBOGWDg0xxfKo8xh9rlxOU\nkhV6IDA1mSEb5+M/92u3isuRcbNnjL4yFhLG/HeRq98tIDze4Ln3uHHgn7WmKtsZja513Or3oVHJ\nzgcw3UOf1unBqpgN+MqsDQ7Fb13jpa1LKDtzqlvdA9k5cfOb+YSfPKSe9P774Jf10aqd8GxydGLn\nSeY26MWP+yzjoZa5foFn/1pB9anvudU9kJ0TPl98QZcLBgvPJ0ywSD7u6U7oGascMEpfkNGjjoyO\n40yRu/kqVM3Y0HXvb4QHqDn0XBmjmz0hOZWFm48y+Pe5Sv24slWgRw+LshxHbxq3JjsfwHQPxZWs\nyNLaamLVAdt/Ivwe9/rIseXEoj+P8L8/VCf2l6tuMTIH7YSnkxsnYkNq8Eu15sq5L25eSHhFNfSA\nK2PLiR83/sOg9fOU+turNIT27S3KPN0J9/qUywes0xeEBAfRrVEIkdFxmaOUz5t243KBwhbn+Urj\ntB62plBdAVs3e/juNVS+eEIpHx/WD3wsbyFbz8bd/Zm5xoSRDxO61gFMMWgynJjW6ikSfS13hwal\nJMLYsco13dGJbrt/pdKlU0r5+2H9LEbmoJ3wdHLrRGSr/qQKy8/LYok3YNIk5Zru6ETfHcu55/pF\npXxcC3VnpKc7oTtWuSC8QQibItpxZGJnhneozpId8RZTv1cLFOZjg+jKmWk90jGPzOuKMUyMburA\n5ERe3zRfKd98bx0ONVDTleQ0etO4P+Y+bIowzUxl3NcZnCxaim8adlZP/uILOHgw86U7OlEg+RaD\nN32vlG+oUJ+j9dVZCe2E55MbJ/4tUZ5FdR5UT54xA+Kz7nd3dKLoreu8tEUNw7OqWgvO16ynlHu6\nE7pjdZvYejb8ra20Hq+8YkrAaeNcV4rZYXSzP7v7Z8pcO6/UndFuAMM71lDKbY3ePGF6V2OMLSdm\nNu/J1QCrxxypqSYn0hetuqMTz+9cRWmDkfmH7Z8x/GLQTngftpyYHvYUt/wCLAtv3YLBg93aiUEx\nPxJ867pFWarw4eN23umEXrx+m9iaBk30C2BOh2cYuTjS8sDOnTB+PIwZY/NcV4nZkXFTR0bHcfJy\nAlULpPL6dnUU8nv15sRVqs3rC3YSGR3H8A7VLYSwlaBU45nYun8vBxXl+7a9GPirVfqj1avh009h\n0CC3c6JaYCqvxqhJZVfXbMmhCjW1ExrA9v17umgJFrd4gr7rF1geWLIE5s+HPn3czon7fRN4fscy\npd6SOu3ZX6xsZofQ+v73ZCf0jNVtYusZcEhwECN/mGCcuXzcONi82S2eK5tPaf+aup2AK5YL8KWP\nD1PbPs2lm8kuOU2tcT7ZOTFw6YcQYvDhOWwY7N3rdk5EJ28h4OoVi+Npvr7aCY0F2TnRN+pTuPtu\n9eCgQXD4sNs5sfzy7/jdsuz0Jfr6My3sKcA7fdAdq9sk22fDvr6m5MRWQUNJSYFevXireelsnyu7\n1ILFM2dImTJVKV5a6wH2BJezKEtITuWdZfuc1TKNi5GtE4UKwezZ6kkJCfDkk0S0Lu8+Tpw6Rcq0\n6UrxotrtOVC0jEWZdsK7ydaJ4sXhk0/Uk65ehSef5I12ldzHicOHSZs1Syn+pmFnThXNWhqTkJzK\n0IW7vKZzlauOlRCioxAiTghxSAihZFYUQgwRQuwXQuwWQvwmhKhg/6a6Bjk9G47yuYc5rXurJx47\nRsN3hjLhifsNz3XGgsXshLQ+tvm5Ifgl3LQ4P9HXj6kt+xhe+3JCstdIA9oJc3J0onQdfmz6mHri\n/v3UnfS2zXNdzYktz75uODKfHmbgO9oJg+PaiQwnqobxaz01JAkxMdSeMd5tnNg54FV8UixTvl0L\nCOKTZj2sL0uqlF4zcyWkQeRTiwpC+AIHgYeAE8B2oLeUcr9ZnQeArVLKm0KIl4C2Usons7tuaGio\njImJya6K25Fx06fcusXCeRE0OKUuNtw97B3qRo7JrP/Osn1cTki2ec2Q4KDMXSb2aJv5osggf9/M\nbcHmx8pdPs3aL14kIM1SmC9Du/Be+/9zeFvzAyHEDimlGh7ZuK52Ipdk3HfcuMFP3wyh2oVjSp0d\nY6fT6O3BmfVd0Yl7L53it9kv4p9muah4VuMnGN/uOYe3NT/QTjiGjPvO/9oVVs4ZTPkrZ5Q6W6Z9\nRbPXBmTWd0Unapw9wqqvX8UHyz7ElJZ9+MjGYMOebc0PcutEbhavNwEOSSkPp1/4B6ALkCmMlPJ3\ns/pbADVwhYcRFRufuXivbHBQZsDQhORU8PXnf13eYOXXr5rilJhRc9o4eLIzUb5lGL5ol2EeQnPs\ntWAxp50m5sde3zhP6VRdDwhiplFICQe01Q3QThiQrRMBBXi5y5ss+2aIRZYCgJrjIqBnR6JuFnZp\nJ6w7VdcCgvi0WXentNUN0E4YkJ0TCQUK88rjb7B43hvKvVXrrcHQtT1RF3xd1olh679ROlXnCxbj\nq9AuTmmrK5ObR4EhwHGz1yfSy2zxHPBzXhrl6tiajjWPWXKiWGneeGSwcq5/agr07MmnUTtylAXs\nt2Axu50m5seqnzvKE/v+UOp90fgJLhYslu17uNLiSgejnbAiN078U7ICYx4cqJxbMOkW9OzJjBW7\nXdKJGmeP0GW/mmh5VpOuXNJOZKCdsCI3TuwqW52JbZ5Rzi2acA169WLqqn0u6UToiX08+O92pd7H\nzZ/kRmD2keS9wQm7hlsQQvQFQgE1C6vp+AvACwD33nuvPd/aqdjq1fsKYZFUMrpaC75u9BgDdiy3\nvMCRIwxeMJlBXSKUKM3W3ExKISo23iIjeEbUdwGZ44XiBf0Z81htm9tXbeWz8rFqs9Eo5EJQUWY3\nDs+2nZ4U3M2eaCcs76+FdR+i+bHdPLH/D8sL7N7N8z4fMrKDQVJjK4ycMH9U4iMgTZoeOViHPTAn\nL06cL1iML7UTd4R2wvL++rJxOM2O7+GhQ9ssL7B5M0+lzWJi2wE5vpdTnZCSNw3SOZ0oWor59Ttl\n205vcSI3M1bxQHmz1+XSyywQQjwIjAQel1ImWh8HkFLOklKGSilDS5Y0CKbpJtjq1adKqezmmND2\nWfaUrqzUfSRuE31jV+X4XpduJmcu+DMfAQEWH/WXbibz2oKd1B79i+GiQ6NdKhltzqDRif2q3MDM\n9FJpkq0AABMKSURBVFFIQX8fihf0RwDBQf6Z//e04G65QDthRa6dEIJRDw/i37vUe6XPzl/ofGBD\nju9l7cTwRbss1p9kDPDjLyfk2QlbI/OPWvTiZkCQdiIL7YQVt+PEsEdeNwww/eLWJbT9N+c1Zs50\n4oHDMTSO36/UmdqqD0l+/toJcjdjtR2oKoSohEmUXsBT5hWEEA2Az4GOUsqzdm+li2GrV58xGjAf\nKST5+fNKlzdZMWcwRZIszxm99gv+CqnJ/tL3Zft+tp5xG3EjyTLjOGQFYov57yLzthzDcGJZSt5c\nN0cpPlG0JN81eASAm8lpSATTnqzvFXJkg3bCittx4kZgQf73+Jv8+O1QAlMtF+RO+uVD9txThWPF\nyyjXMsfciZweleTJCRsj8+/rdQS0E2ZoJ6y4HSeuBBXh1ceHs2B+BH4yzaL+1JVT6TTgQ84UKZHt\n+znDCSHTeGOd6sTBu+8lqlZbQDsBuZixklKmAK8A0cABYKGUcp8QYqwQ4vH0apFAYWCREGKnEEIN\nw+pBZBejJLxBCDvHPMz0J+sTkv4s+b/iZYno+KpynYDUFD5dNolCiTeVY9ZYP+PODdZpEH7/+5zx\nFwjQ9nAMTU6oo5BpLfuS5JeVTNeVUivkF9oJldt1Yn/p+wx3mBZOSuCz5ZMISLG9AyoDRzuR08jc\n1jW9Ee2Eyu06saNcLaa07qdc566Eq8xcOQXftOwH1eB4Jx47sJ6a544q5ZFt+pPmk/WzersTuYpj\nJaVcJaWsJqWsLKV8P71stJRyWfr/H5RSlpZS1k//93j2V3RvcpPnKCMybYY0K2u2Yl79jsq1KlyM\nZ9rvn2fmibKFjxA2b/bsMJfMlnD+qcm8aWMU8mPtttle01vRTlhyJ058V78TK6q3VK5V69Qhxm3+\nJsf3dLQTRiPzuBJZI3Nb1/RWtBOW3IkTnzXtxrpKDZVrhf63h1E7FuX4no50IijpFkM3fKeU/1W2\nOqurNM32mt6GzhV4h+Q2z9HwDtUzY3+Mbfd/NIz/W+nxP7zrN/qVu59v73/I5nVSc+h42cJ8B4at\nqekxa2blahRidE2NJoM7cWJEp/9R9/Q/3GsVy6fnnz+yoWxtllduZvM6jnLCJy2VyFXTDZ34oLV2\nQpN7bt8JGNJ5CKvmvKok+n7m93msL1OL38sZpE1Lx1FO+Kcm8+HyyVS4fFo5d1KbZww3YXmzEzql\njYMxH7Uk+Qcytt87pASp21HH/PY5LW+dVhb8+eawazA7rHdgWE9Nl716li+WvEffnequ573la9J5\n5MBsUytoNHeCuRPXAwvxbt8xpJk9WstgSvRHNJRXnepErTOHWfrdcMINwitoJzSOwtyJi4WCea/3\nSKSP5dezkJJPo6dzv2+CU52ofzKOZXNfN9zYtLlaY3oP76edsELPWDkBZdTSwBf6WT5L97t1i+9+\nnQLbt5vyq6VTKWKl4TUFcGRiZ4sAdMWC/BECLt9MzgxGZz3tDDB11T46rlnA65vmE5R8S7l2so8v\no9o+T1TDciCEEuDOWxckauyH4kTVJHjtNYs6AdeusHT9h7B+Pfhndbwc4cTMZbH0WjGbZ3Ysx9dq\n8TCYnHi7zXP8qJ3QOAhLJzpDyDV45x2LOgXOn2XFts/hl18sctI6wonPomLot+wzeu+KxsdgJuyW\nXwDvtHya6PT62oksdMcqP+jbF37/3ZSw2ZwDB+CVV+DrrzOLbD2+y5hmze1UcwbhN48SvmAY7Nlj\ns864ds9zrlb9O7q+RnNHvPqqyYmffrIs37IFRo6EyZMzi+zqhJSE/7uZ8FmD4eRJm9VGPTyIs7Ub\n3P71NZo7ZdQoWLfO5IU5a9bAxIkmL9KxuxN71xL+6VA4d85mtaGPvM71qjVv//pegH4U6CSsk1cu\nf24E1K6tVpwzB77JWrhrK65IRkC4XJGYCH/8Ab16QcuW2Xaq5tXvyMKmXbx6GlfjHCycmPQ7K18b\nB+XLqxUjI2FVVsw3uzhx7hwsWAAPPAA9emTbqfqgVV+WhT6indA4HAsnItfxc8QHYBTLa/Ro00xu\nOkZOCOCBGrcRB+z0afjuO2jRAvr3t9mpSkPwbvv/Y23dttoJG+SYhNlReGJyTVsYJbYUQOXzx1j+\nzRD1cVzBghATAzVrZp5vlIQzIzmmMlK4ft000l+/3vRv61a4pT7yM+d8kbsY2/Y5djTvwPCONbxu\n9HE7CWcdhXYCGpw4wMLv38Qvzepx3N13w86dUK5c5vm35cTx47BhQ5YTBw7k2MYjpe5lRPuXOF63\niVc+2tBOOBdbTrQ88hdzF41RH8eVLWtyIr3jNSpqjxJ/yqYPUsJ//1k6cfBgjm08WKYKbz74Emdr\n1ddOZFdPd6wcT9jEtYbTtAA9dq8m8ucZ6oH77zd1iAoWzPYaIcFBbBrYADZuzBJkxw5IzTnmCQA+\nPjBoEIwbB8Wyz3vmyegvEeeSnRMvbllMhEGwWlq2ND0W8fPL9hohxQqwqfu9ll8aR47kvnFBQaYZ\ngSFDICAg9+d5GNoJ55KdE8PXzeXlLQbhFjp1ghUrwMcn+++INx+AuLgsH9avNw02ckvhwqbviJdf\nzvTPG8mtE977G3Ii2cXzWFTnQZof203XfVbP0ffuhcGD4YsvlGuUvH6RJsf30eTEXpoc3wdv/Zdj\nHCxDQkPhs8+gUaPbP1ejyQPZOfF50640Pb6HBw7vsDywcaNpMe+4cRbXEDKNqueP0fT4Xpoe30eT\n43vhrUt31rBHH4WPPoKKFe/sfI3mDsnOiamt+tLk+D41YO3PP8OUKTB8uMX5Pmmp1Dj3H02O76Xp\n8b0w9Z9s10tlS48eMG0ahHjX7FRe0B0rJ2BrYSGQmTut/qmD3HfRan3I7NkMPVmE/2o3ot+hndQ+\ntIvGJ/Zx3yXb60FyRalSMGYMDBxosbNEo3EW2TkhhQ9DOw9h1df/4x6rWD5p48fz4n5ILVOW/x3a\nSZ3Du2l8Yh/Bt67nrUHVq8OECRAenmNidI3GEWTnRKqPL68+PpxVX79K8VvXLI6lRIxgQEwijQKD\naHTcNNhufGI/RRNv5K1BdeqYNo10VANba7JHPwp0AkbPzq1pnXCSbz7/n2mhuQNILH43gQ+0MX1x\n9OxJ1P7zenusGfqxh3PJjROPXPqHT2YPBev1VnbiauXqFH24HXTtCu3bE7XzpHbCDO2Ec8mNE91P\n7+KDuSNtHs8LaUJwrUoNinV8ELp3h1attBNW6EeBLkS4WZyP+Mum4G7WCwy7PvkI1EqDF1+0y3ue\nLFqSreVqs638/WwrX5uTpSswoVtdwhuEKAJbJ+LUaBxNbpx4+MUeUO6aab1THpE+PuwrXZktIbUy\nnUgsWjxzYa92QpPf5MaJloOfhhIXTY//8kianx+7S1dhS7nabCtXm5hytUguUkw7YQf0jFU+YB6s\nzWIUICX07m3aBn67VK8OrVpB69Z03evHX6KoUsVXCKb0rJcprjUhwUFsimh3Jz+S26NH5/mLTSdS\nU02PItasub0LBgRAkyaZTjy0JZl/bqnRZbQTttFO5C82nUhKgtatTZubbocCBaBpU2jTBlq3pv2m\nW/x7U62mnbCN3hXorty8yZ8N29EiLhtphIC6dU2CtGpl+le6dObhShErbSbiDPL3tTnVnBGl1xvR\nXyIuzKVL7GzYhvpHbcdfo1AhaN7c9IXTpo2pU1WgQOZh7cTto51wYc6c4UCjNtSMj7Ndp0gRU0yq\n9I4UoaEQGJh5WDtx++hHge5KwYKc+3YB37wymKe2L8dPppHo68/+MlUo1L4t1Xo+apIlONjmJbJb\nBJmQnIoQxpsIvTlppsaFKV6c/xb8xK7/DaF3zAoC0lI4X7AYe0KqU/KRh7j/qcehQQOLtDfWaCc0\nHkXp0vyzaAW7XhlM99hf8JNpnCl8F3tCqlO688PUeeoxqFcv29AI2gnHoTtWLkiXxhWI+mwmXZb0\n59q5i5wpVopEH19CgoMYXqY64dl0qsA8U7rxiENK8PcVJKdmWePtSTM1rk2XJpWI+uxjOi97jnMX\nr3EtqCipmB5LDPcPITybThVoJzSex+PNqxA1exZtFm7j+s1ErgQVoXhBf8Y8Vps6uVgDpZ1wHLpj\n5aKYFgc2ZcTSPSTmYvGgkmTT5iSviUIBfhQK9NO7PTRuQ8b9OWLpHlK1ExoNABf9gkgIMgWyvXQz\nOdsF5toJ56A7Vi5MZHScMppISE4lMjrO4ua23r1hnebDiCsJyewc87B9G6zROBjthEaTRW59AO2E\nM8lVEmYhREchRJwQ4pAQIsLgeKAQYkH68a1CiIr2bqg3YisSr3W5kVw5oZ+T5w3tRP6gnXBdtBPO\nJ7c+/H979xMqVRmHcfz7cP27stIw0zQlsdwpYlHQooL+LLpFCrXJwLCItoEQtGgTtQmiIKQEa1GR\nm25gRGXSKstFZRblVYgUs/9CRGb1azFvNU537hxn3nPmHX0+MNxzZ17uec6954H3nnNmDrgTTeo5\nsZI0BjwD3AysBu6StLpj2Gbgp4i4DHgSeDx30HNRt5268/npboUwFZ8nH4w7MTzuRJncieGo2gdw\nJ5pU5YjVemAyIg5HxO/Ay8B4x5hxYEda3glcL/m+EIN66MZVzJ15+i1nptrZq/xXMSYhWhf7Tnm3\nczsT7sSQuBPFcieGoGofwJ1oUpVrrBYD7bfBPgJc2W1MRPwh6QQwH/i+fZCkLcAWgKVLl/YZ+dzR\n/km801082OvdHXNnjrkkebkTQ+JOFMudGIKqfQB3okmNXrweEduAbdD64Lcm1z2qbluzuOeO3lmu\neXNnIsHPv57yOzkK506cOXfi7OZOnJkqffhnHLgTTagysToKXNL2/ZL03FRjjkiaAcwDfsiS0Cqp\nWi7Lwp0YAe5Eo9yJEeBONKPKNVYfAislLZc0C7gTmOgYMwFsSssbgN0xrHvlmNXPnTA7nTthlvQ8\nYpXOhT8IvAmMAdsj4oCkR4F9ETEBPA+8KGkS+JFWqczOSu6E2encCbP/VLrGKiJ2Abs6nnukbfk3\nYGPeaGblcifMTudOmLVU+oBQMzMzM+vNEyszMzOzTDSsawclfQd81WPYAjo+46QApWUqLQ+MZqZl\nEXFhU2Gm4k5kU1oeKC9TlTzuRP9Ky1RaHigvU7ZODG1iVYWkfRGxbtg52pWWqbQ84Ex1KnE7SstU\nWh4oL1NpeQZR4raUlqm0PFBeppx5fCrQzMzMLBNPrMzMzMwyKX1itW3YAaZQWqbS8oAz1anE7Sgt\nU2l5oLxMpeUZRInbUlqm0vJAeZmy5Sn6GiszMzOzUVL6ESszMzOzkVHUxErSRkkHJP0lqevV+ZJu\nkvSFpElJW2vOdIGktyQdTF/P7zLuT0kfpUfnPbJy5Jh2myXNlvRKen2vpEtzZ+gj0z2Svmv7vdxb\nc57tkr6V9GmX1yXpqZT3E0lr68yTgzsxbQ53onced6LmTpTSh7SOojpRWh/SOuvvREQU8wCuAFYB\ne4B1XcaMAYeAFcAs4GNgdY2ZngC2puWtwONdxv1SY4ae2ww8ADyblu8EXqn5b1Ul0z3A0w3uP9cC\na4FPu7x+C/AGIOAqYG9T2QbYJneiz212J9yJJjpRQh+qbnOTnSixD2mdtXeiqCNWEfF5RHzRY9h6\nYDIiDkfE78DLwHiNscaBHWl5B3Bbjevqpso2t+fcCVwvSUPO1KiIeI/WzV27GQdeiJb3gfMkLWom\nXX/cia7ciQrciUb+FiX0AcrrRHF9gGY6UdTEqqLFwNdt3x9Jz9VlYUQcS8vfAAu7jJsjaZ+k9yXl\nLlaVbf53TET8AZwA5mfOcaaZAO5Ih1N3SrqkxjxVNL3vNMWdcCf65U4MroQ+QHmdGMU+QIZ9Z0bW\nOBVIehu4aIqXHo6I15rOA9Nnav8mIkJSt7dRLouIo5JWALsl7Y+IQ7mzjpjXgZci4qSk+2j9p3Td\nkDMVx504p7gTFZTWCfehNmdlHxqfWEXEDQP+iKNA+6x2SXqub9NlknRc0qKIOJYOB37b5WccTV8P\nS9oDrKF1fjmHKtv8z5gjkmYA84AfMq2/r0wR0b7+52hdizBM2fedHNyJvrgTebgTA+YppA9QXidG\nsQ+QYd8ZxVOBHwIrJS2XNIvWBXi1vMMimQA2peVNwP/+W5J0vqTZaXkBcA3wWcYMVba5PecGYHek\nK/Fq0jNTx3npW4HPa8xTxQRwd3rXx1XAibZD+KPMnXAn+uVODK6EPkB5nRjFPkCOTgxydX3uB3A7\nrfOZJ4HjwJvp+YuBXW3jbgG+pDXbf7jmTPOBd4CDwNvABen5dcBzaflqYD+tdz3sBzbXkON/2ww8\nCtyalucArwKTwAfAigb+Xr0yPQYcSL+Xd4HLa87zEnAMOJX2o83A/cD96XUBz6S8++nyjqKSHu6E\nOzFgHnei5k6U0oeK+1+jnSitD2mdtXfCn7xuZmZmlskongo0MzMzK5InVmZmZmaZeGJlZmZmlokn\nVmZmZmaZeGJlZmZmloknVmZmZmaZeGJlZmZmloknVmZmZmaZ/A2cFt/qWYuuOQAAAABJRU5ErkJg\ngg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAHiCAYAAADbK6SdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAACQDUlEQVR4nO2deZxN9f/Hn59ZMNZBFINIlmgxNZaIUKGNKS3ad2lTkrJT1l/SntAm6ZtUmpSKSvaUsSVbicJQRox1MMvn98eZO+6959y5d2bucu697+fj4cF9n8+5932v+7rvcz6f9+f9VlprBEEQBEEIHTGhdkAQBEEQoh0JxoIgCIIQYiQYC4IgCEKIkWAsCIIgCCFGgrEgCIIghBgJxoIgCIIQYiQYC4IgCEKIkWAcoSil/lJK/auUquBku18ptdCHc6cppUa72R5VSqUrpU4opab532NBEDzhTz0rpcoqpd5RSv2tlDqslFqjlLoyQK4LPiLBOLKJAx7303PtBkYD7/rp+QRBKB7+0nMcsBO4FKgCDANmKaXq++G5hRIiwTiymQA8pZRKdD+glGqqlPpOKbVfKbVFKXVTgb03cBvwtFLqiFLqSwCt9WytdRrwX/DcFwTBCb/oWWt9VGs9Umv9l9Y6X2v9FbAduCiYb0ZwRYJxZJMOLASecjYWTHV9B/wPqAncAkxSSjXXWk8FPgSe11pX1FpfG1yXBUHwQED0rJQ6HWgMbAis+0JRSDCOfIYDjymlajjZrgH+0lq/p7XO1VqvBj4DbgiJh4Ig+Ipf9ayUiscI1u9rrTcHxGPBJ+JC7YAQWLTWvymlvgIGApsKzGcCrZVSWU5D44APguyeIAjFwJ96VkrFFIw5CTzqf2+F4iDBODoYAawGJhY83gks0lpf4WG8tPISBPtSaj0rpRTwDnA6cJXWOicQjgq+I9PUUYDWeivwMdC3wPQV0FgpdYdSKr7gT0ul1DkFx/8FznJ+DqVUnFKqHBALxCqlyiml5GJOEIKMP/QMvAmcA1yrtc4OiuNCkUgwjh6eAyoAaK0PA12AXhhblv4B/g8oWzD2HaCZUipLKZVWYBsKZGNMj91e8O+hwXJeEAQXSqxnpdSZwINAC+CfgizrI0qp24L8HgQnlNYyIykIgiAIoUTujAVBEAQhxEgwFgRBEIQQI8FYEARBEEKM12CslHpXKbVXKfWbh+O3KaV+LfizXCl1gf/dFATBH4ieBcGe+HJnPA3oVsTx7cClWuvzgVHAVD/4JQhCYJiG6FkQbIfXfaJa68VFdfPQWi93ergCqOPLC5922mm6fn2PTysIQgGrVq3ap7Wu4X2kd0TPghBaPOnZ30Ub7gO+8XSwoINIb4B69eqRnp7u55cXhMhDKfV3iF5a9CwIfsaTnv2WwKWU6oQh3mc8jdFaT9Vap2itU2rU8MuFviAIAUD0LAjBxS93xkqp84G3gSu11tLvVhDCGNGzIASfUt8ZK6XqAbOBO7TWv5feJUEQQoXoWRBCg9c7Y6XUR0BH4DSl1C6MjiHxAFrryRj9NatjNLMGyNVapwTKYUEQSo7oWRDsiS/Z1Ld4OX4/cL/fPALS1mQwYd4WdmdlUzsxgQFdm5CanOTPlxCEqET0LAj2xHYt8NLWZDBo9nqyc/IAyMjKZtDs9QAiYEEIM0TPguAbtiuHOWHelkLhOsjOyWPCvC0h8kgQhJIiehYE37BdMN6dZd3n2pNdEAT7InoWBN+wXTCunZhQLLsgCPZF9CwIvmG7YDygaxMS4mNdbAnxsQzo2iREHgmCUFJEz4LgG7ZL4HIkdUj2pSCEP6JnQfAN2wVjMAQsYhWEyED0LAjesd00tSAIgiBEGxKMBUEQBCHESDAWBEEQhBAjwVgQBEEQQowEY0EQBEEIMbbMphaESEeaJwhCZOAvLUswFoQgI80TBCEy8KeWZZpaEIKMNE8QhMjAn1qWYCwIQUaaJwhCZOBPLUswFoQgI80TBCEy8KeWZc1YEIKAc5JHlYR44mMVOXm68Lg0TxCE8MGh54ysbBSgnY6VVMthFYwlA1UIR9yTPLKyc4iPUVQtH0/WsZyo/S6LnoVwxF3PGgoDclI0ZFNLBqoQrlgleeTka8qXiWPN8C4h8iq0iJ6FcMVKz45AvGxg5xI/r62DsfOVc4xS5GntctyRtSbiFexK2poMMjwkc2RkZZO2JiNqvr+iZyHcCaSebRuM3a+c3YXrQDJQBbvi+A4XRbTcDYqehXAn0Hr2mk2tlHpXKbVXKfWbh+NKKfWqUmqrUupXpdSFxfbCAqupACskA1WwK758h4O9v1j0LAglI9B69mVr0zSgWxHHrwQaFfzpDbxZIk/c8OUKWTJQBTvj611ekO8GpyF6FoRiE2g9ew3GWuvFwP4ihvQApmuDFUCiUqpWibxxwtsVcqxSjLv+vIif3hPCF1/v8oJ5Nyh6FoSSEWg9+6PoRxKw0+nxrgJbqRjQtQkJ8bEej+drLcIVbI237zDY8m5Q9CwIFgRaz/4IxsrCZpmdoZTqrZRKV0qlZ2ZmFvmkqclJjLv+PGKV1dPL2pJgfxzf4aTEBBTG1ofb29RzeWzDu8GA6fn/rmmMp58y0bNgdwKtZ39kU+8C6jo9rgPsthqotZ4KTAVISUmxTqd0cOIEqUs+I3nTcrqdd7fLwrkN7yYEwZLU5CS7BVtv+F/Pubnw/vt0f/ZZavYbyT37a4uehbAkkHr2x53xHODOgizMNsBBrfWeEj9bXh5MmwaNG8Pjj3PmFx8z5azjllcfaWsyaDd+AQ0GzqXd+AWkrcnww9sRhKjGf3rOz4dZs6B5c7j/fti5kzbvvsS4Hs1MegZEy0JU4/XOWCn1EdAROE0ptQsYAcQDaK0nA18DVwFbgWPAPaXy6Npr4ZtvXEwdpr3EsoULwWnKWir4CELxCaqeFy2Cm292tf32G6mbF5M68PZCk2hZEEBpD5vvA01KSopOT083H5g2De6x0P8330C3Uzsy2o1fYFkJpbQlyQTBbiilVmmtU0LtR1FY6llraN8eli1ztZ91FmzaBGXKAKJlIbrwpGf7tVC84w445xyzffBgY9qrAOkJKwg2RykYO9Zs37YN3nmn8KFoWRDsGIxjY2H0aLN9zRr49NPCh9ITVhDCgA4doGtXs33UKDh2DBAtCwLYMRgDXHcdtGxptg8bZmRmYr3nS7IyBcGGjBljtu3ZA6+/DoiWBQHsGow9TW/9/ruxpoz1ni8b7tkUBOGii+CGG8z28ePh4EHRsiBgxwQuZy67DBYscLXVqQN//AHlygXOOUGwEWGbwOXMpk1w7rkueR+AMdv13HOBdU4QbET4JHA5YzW9tWsXTJoUfF8EQSg555wDd91ltr/4IuzdG3x/BMFm2DsYt2kDPXqY7ePGweHDwfdHEISSM2JE4XamQo4eNfQsCOHMX3+ZZ32Kib2DMRiZ1e71qfftM66oBSFc+eUXuOYa2L491J4EjzPPhD59zPZJk2DHjuD7Iwj+4NAhaNcOLr0UNmwo8dPYe83YwZ13wgcfuNoqVTL2K552mv+dE4QSkLYmgwnztrA7K5sqCfEoBVnHcqidmMCArk1OJSTl5Bi7Bdatg4QEGDkS+vWD+HjL542INWMH//4LDRsad8TO3Huvy95jQQglzlqunZhAp6Y1+HFzZuFjFz337QuvvWb8Oy4Onn4ahg41tG2BJz2HRzDevh2aNDF+xJx58kmYOBEwf3guH5YgBBj3ko7uJMTHnsoQfuEFGDDAdcB558HXXxsJim5EVDAG44fKPR8kJgY2bjR0juhZCB3etAxOes7dDa1bG9XmnOndG6ZMsTw3PBO4HDRoYLw5d954A3buLPzwMrKy0ZyqbSvF5oVgMWHeliLFm52Tx4R5W4y1pREjzANiY+GMMwLnoJ146imoWtXVlp8Pw4cDiJ6FkOJNy2Do+cWvN8KDD5oDcfnyRsXIYhIewRisb/tPnIDnnrP88Ap//AQhCPhSunH3gWPwyCOFlacKUQqmTjWmuKKBxER45hmzfdYsWL1a9CyEFF/LsF6xYJZRGdKdZ5818iOKSfgE4zPOgMcfN9vfe4+y27ZaniK1bYVg4Uvpxtt3/mJMRbvz6KPWFecimcces54JGDJEalULIcUXLdc+tJf+S2eYD5x/vnWc8oHwCcZgLIwnJrra8vIY/PNHlsOltq0QLKxKOjpTMy+bId9ZrCElJVnXYo90ypc3Cn648+23XHngD8tTRM9CMPCmZYDnfniL8iePuxqVMtaJPSRieiO8gnHVqkZAduPyXxdy4X+uW0Sktq0QLBzJRtk5ecQWbMNLTIinavn4wvKOM//+knL7LIpbvPYaVK4cXIftwv33G/kgbjz3y0ckxLn+NImehWBgpeWkxARub1OvsFzrzbtXc/nvP5lP7tPHqI1RQsJvkapvX45PfIly/2W6mJ9cOJ3bexqJMVXLxzPi2uaSfSkEHPfMyzytSYiPZWR3p+/fTz/B4A/MJ/foYTRFiVbKlGHVPY9z0fAnXMynrf2F1mf/zJKzW5GnNUmSTS0EAU9advnuHT4MzSz2yp9xhnU/hWIQXnfGQNrvWUxoeaPJfsnWlbTc+RsAx3NKVwlFEHzFU7JR/1nraDBwLh3GzOfgnfeaMy4rVjy1NzFKSVuTwZ3Hz2bLafVMxwYs/oD8/Dzzj6EgBAhvWm43fgFbH+pvlGR25+WXzUuoxSTsgvGEeVuYfu4V7KxyuunYgMXTQWvJvBSChqekojyt0cBV331Ela2bzQNGjYK6dQPrnM2ZMG8LR/NgYvs7TMea793G1ZuXipaFoOFNy4mb19PgfxaFabp2hZtuKvXrh10w3p2VTU5sPC9dcqvpWKtdG+m4Lb1wnCAEmqKSiupk/cPjyyySCy+6yMgmjnIcGp3fqA1razU2HX9yyQxi8/NEy0JQKErLMfl5jJ33BrHabda1XDmjnKt7yeYSEHbB2PGBpTXraDm99fTi6SidL5mXQlDwmHmpNWPmTyIh94SrPSbG2FMcW3S2ZjRQqFGleL7DnabjZx3YzQ3rvxctC0GhqCzqO9Z8zQX/WGT5Dx8OZ53ll9cPu2Ds+MDyY2Itp7ea7d3ONZuWkJGVTbvxC6RqjxBQUpOTGHf9eYWZlo4MzGs3LebS7avNJ/TtCxdeGFwnbYrzj9/y+i1Ydub5pjFPLPuI3KPHCtfsRM9CoPCk5dMP7+OpxdPNJzRvDv37++31wy4YO39g3zVqw4a655jGPLl0BnF5uVJGTwgKqclJLBvYme3jr2biTRdweu4xhi94yzywbl1jrVgAzD9+064yl7ytdXgf1yz/QspiCkHBXcsJ8bEM/+EtKp20WCqZMsXcErQU+BSMlVLdlFJblFJblVIDLY5XUUp9qZRap5TaoJS6x28eWlD4gf3fNTSf9rrpeIMDe7hx/feAlNETgktqchIzt39BjaNZ5oNvvGFkUYcQ22p5/NW8NekRy/7lD/80iwonjBKiomchWKQmJ/Fujb1cvWWZ+eADDxhtE/2I12CslIoF3gCuBJoBtyilmrkNewTYqLW+AOgITFRK+e+SoSg6d4bLLzeZH1/2P8rmGOt1kgAi+JO0NRm0G7/Aeup02TIazP7QfNL118O11wbPSQtsr2Ww7F9ePfsQ96V/UfhY9Cz4E496PnqUi18cbj6hRg0YP97vfvhyZ9wK2Kq13qa1PgnMBNwvXzVQSSmlgIrAfiDXr54WhcVm6zOO7OfO1XMBKaMn+Ie0NRm0eHY+T3y81rqj0MmT1t3FKlWCV18Nur8W2F/L554Lt91mMj/wy2wSsw8BomfBP3jV87PPwt9/m0988UWoVs3v/vgSjJOAnU6PdxXYnHkdOAfYDawHHtfaPQc8gLRsadx5uPHwik+okXdcyugJpcZRnScrO8d0rHDq9IUXjJ687owda9SgDj321zIYP4JuHawqnczmoRWfSllMwS940/PsaV8bQdedyy6zvFj0B74EY6sNVG7lhOgKrAVqAy2A15VSpoK7SqneSql0pVR6Zmam++HSMWqUsW3EiarHD/PBwSVSvUcoNd56nMZv/9M6OatlS3jooQB6Viz8pmUIoJ7POstYk3Pj7tVf8dIlp4mehVJTlJ6VzufxT1+EPLfjZcvCm2/6ZU+xFb4E412Ac6mgOhhXzc7cA8zWBluB7UBT9yfSWk/VWqdorVNq1KhRUp+tadYM7jBvdWr60Tvg78AvRB1FrlNqzYQFk+G4WxeX2Fi77Sn2m5YhwHoeNszUv7xs7km6ff62f19HiEqK0vOta7/lot0WVfOGDIFGjQLmky/BeCXQSCnVoCCRoxcwx23MDuAyAKXU6UATYJs/HfWJkSPNqeZHjpS6gLcgFLVOedOWxbTcarGnuF8/aNEicE4Vn/DRcq1a1lXK3nkHtlr3LxcEX/Gk5xpHDvDMovfNB5o0sewY6E+8BmOtdS7wKDAP2ATM0lpvUEr1UUo52leMAtoqpdYDPwDPaK33Bcppj9SvDw8+aDKffO0N2j38nhQNEEqMp+o89clm1CKLerVnnmlcHNqIsNIywDPPmNtL5uYy/4Y+UgREKBWe9Dxq0TtUPnHUfMLkycY0dQDxaZ+x1vprrXVjrXVDrfWYAttkrfXkgn/v1lp30Vqfp7U+V2s9I5BOF8mQIVChgoupTF4OfZd+JEUDhBLjXqAiKTGBl29uwcLMbyibtd98wqRJpu+hHQgrLVerBgMGmMyXr1tAk73bRc9CibHS8//qZtHtt4XmwXffDR07Btwnpd1buwWJlJQUnZ6eHpDn3nL/4zR5x3UrSZ6Koct9b/Bn9bokJSawbGDngLy2EFk4mo3vzsqmtntf3UWLrEV6440wa5bffFBKrdJap/jtCQNAwPR85Agn6tWn7IH/XMzfnd2KB3oae0BFz4IvFKnl7GxjW902txWZ6tVh82Y47TS/+eFJz2FXDtMX+iZdRlY510pHsTqffkuMYgxSNEDwBcf2B8s9iCdOQB+LJuOVK8MrrwTd14ilYkXebHezyXzF1l+4MGMTIHoWvFOklsEoNuMeiAEmTPBrIC6KiAzGv5+IZXLrG0z2a7Ys5dx/tkrRAMEnPDUbnzBvC/zf/xlXzO6MH28kHwl+480ml5NRyZyt7ehfLnoWvFGkljdsMIKuO5deakxRB4mIDMa1ExOYdtE1/FvRXCXlmSUfSNEAwSc83XGV3bYVxowx2fefd6FlAqFQOk47rQovX3KLyX7xjvVctutX0bPgFU9a3nPgqDHDleNa/CM/Lt5I2grQnmIrIjIYD+jaBFW+Aq+17WU61n7bKlIPydYIwTuWd1xaM+GHN43Sl07kxMRy98X3k7ZuT5C8ix4GdG3CN8ld+LNaHdOxF9bOIrVF7RB4JYQTnmZPHti6CJYuNdknt7mBtOxKgXbLhYgMxo5MuSXtu/N34hnmAYMHQ4gS14TwwWr7Q69NP3LRtrWmsW+1uo5fq9aTjkIBIDU5idE3tOC9bveajlXduA4+/zwEXgnhhJWWk04epv/35iIy26vW4pXWNwZdyxEZjMEQ8KKhXTnz9RfMB5cv594bR8o+RaFI3Lc/NIs/ybNL3jON21HldF4tmIWRZKLAkJqcxOgPRkBysunYH72foP3Y70TLgkestjJ99PunlDl00DR2aJdHOBFXJuhajvM+JMy55RYOjhxNla2uyTYDFk/nqoYpDJq9HkDq3QqWpCYnnfpu3H03ZB0wjRna5WGOx5cDpKNQQImJYfm9T9L2Mdeyt43+20mrZd8wKNtI0BEtC1a4aHnBAhj0mWnM5806sqx+CyD4Wo7YO+NCYmIY09bcZeOczL+4dtNiaVYu+MaPP8L75jJ5X5xzKYvPughAOgoFgQGHa/FzneYme7+lH5KXfVy0LHjn+HHLbYlZ5SoyuvP9QGi0HPnBGPjkjBasqm2udf/kkg+Jy8uVqUWhSOas+JMdN5qbkJysVIW3rnu0cNpr3PXnyV1ZgNl98DgTLr3TZK9zaC+91n0rWha8svnxwfDHHyb75Ct7s79CYsi0HPnT1EDtquV5/tK7+PijQS72+ll7uPnX+Szs1DNEngl2J21NBhlPD6f7f+b1yDIvPM9Xvc372YXAUTsxgXSas+CsFDpvc6349dhPH7Os/bUh8kwIB77/fDEd3nnNZP/vghQGfjqBgTGhuz+NijvjAV2b8GvDFiyub07+eHz5TAZ2qBcCr4RwYNYH83lgmbm05bozz4X77w+BR9GNIyv2hQ7mu+MaR7N4NdO8TUUQANCaak/1pUxeros5JyaWxzv2gRAGYoiSYOzIpJt2TW/TsZpH9nPt0tkh8EqwPfn5PPHJRMrku4r3ZEwcT13+cMjFG404tHywSXO+bNredLz5jMlwwJxkJwh88AEXbltnMr/V6jqWlbPYAhtkoubXJDU5iXdf6wM3WEwrjh8PWVlB90mwOdOm0WrXBpN5SuueHDtbErVCRWpyEssGdubaL96GWLc2eFlZ1qUNhejmv/+gf3+T2bEt0Q67IKImGBcyapT5jubAAZg4MTT+CPZk71546imTeXvVWrzT4RbJmrYDjRvDPfeY7a+8Av/8E3x/BPvy9NOwz9yWe1iXh1HlK9hCz9EXjJs2tS7+/dJL8O+/QXdHsCn9+1tOd758fT9G3pwiWdN2Yfhwc9P3Y8csa4cLUcrixfDuuybzl03bs/XCS2yzCyIi+xl7ZccOaNTIVF+Yvn2l/V2U4tzrtPu+jbzyztPmQbffDh98EHTforqfsS88+aRxMe1MfDz8/jvUrx8Sl4TQ4azlMyvGMufdvlTe7raVqXJlo+taCDqsRVU/Y6/UqwcPP2y2T54Mf/8dfH+EkOLc67RMzgn6ffaSeVC1avDii8F3TvDOoEFQ0bV/OTk5MHJkSNwRQod73+Jr5n9oDsQA48bZrtVpdAZjMJpFuAv45EkRcBTi3Ov0sZ8+pn6WReelCROghrmnrmADatQw7o7d+eAD2Lgx+P4IIcNZy2ce2M1jyz82D2rd2patTqM3GHsS8PTpIuAow1G1qVHm3zz4s7leLR06WCcKCfahf39j9sKZ/HwYNiw0/gghobACm9aMmv8mZfNc+xQTGwtTppiz8G1A9AZjMIKxCDjqqZ2YgNL5jJv3OvH5ea4H4+MN8QaxybhQAipXNqar3Zk9G1auDL4/QkhwbFHqvmkRHf5aYx7Qrx9ccEGQvfKN6A7GVaqIgAUGdG3CHb99R0rGJvPBQYOMDHzB/jzyCNSubbYPHRp8X4SQMKBrE07PPcawH8x9iqlXz9bLkNEdjIE57VLZW/k084EhQ4LvjBASUmvFMnTJdPOBxo2tL9YEW5K2eT/Pt7rJfGD+fFi4MOj+CMEnNTmJmdu/oMaxLPPB11+HChWC7pOv+BSMlVLdlFJblFJblVIDPYzpqJRaq5TaoJRa5F83/U/amgxaPDufvl9s4aWLe5kHfPed0TZPiHz69aPMYXOTcSZPhnLlgu9PAIlkLT/x8Vqmnt2RvxItsmQHD4YQbeMUgsjy5TSY/aHZfv31cK29m4h4DcZKqVjgDeBKoBlwi1KqmduYRGAS0F1r3Ry40f+u+g9H+ntWtrG4/8l5l7O9qlnA+/v2p924H2gwcC7txi8gbY25c48Q5nz7LcycabbffTd06hR0dwJJNGg5NzaOF9ub+5fz008MuHusaDmSycmxzpKuWDEs6kf4cmfcCtiqtd6mtT4JzAR6uI25FZittd4BoLXe6183/Ytz+jsUCPiS203jqv22hmbpC9FARlY2g2avFxFHEseOwUMPme3Vq0dqfeOI1zLAl+d0YFON+qax937zNuh80XKk8uKL8NtvZvvo0VCnTvD9KSa+BOMkYKfT410FNmcaA1WVUguVUquUUub+ZoBSqrdSKl0plZ6ZmVkyj/2AVQPyr85pz8aaDUz2pxZPJ6YgwzY7J48J87YE3D8hSDz3HPz1l9n+4otwmkUeQfjjNy2DPfRspWWtYnihwx0m+zmZf3HtpiWAaDni2L4dnn3WbL/oInj00eD7UwJ8CcZWezrcF1/igIuAq4GuwDClVGPTSVpP1VqnaK1TaoSwgIJVhw6tYphg0SO1yb4d9Nh4atnMSvxCGLJ+vXVzkM6d4Q7zD3mE4Dctgz307Knbzg8NW7GqtjkLvt/SGcQV9LMVLUcIWhuZ9Nlu/58xMbbdU2yFL8F4F1DX6XEdYLfFmG+11ke11vuAxYA9N3NxqkG5Oz+elcLKpGYme7+lHxJfsHncDq22hFKSnw+9e0Oua59iypaFN9+M5D3FUaNllGLCpeaL6wYH9nDj+u8B0XLE8Omn8M03Zvtjjxl3xmGCL8F4JdBIKdVAKVUG6AXMcRvzBdBeKRWnlCoPtAYsNm3aA0eD8iR3MSrF8xYCrnfwX3qtm0dCfKwtWm0JpWTKFFixwmwfMsTYzhS5RLSWFRDrdCG1ot75LK6fbDqn77KPSCRXtBwJHDxoNPhxJynJaJcbRsR5G6C1zlVKPQrMA2KBd7XWG5RSfQqOT9Zab1JKfQv8CuQDb2utLVbS7UNqchKpyUk0GDjXZZ5uZd1z+fGsi+i0bZXL+Cd++phWI5/kWhu02hJKwe7dMNBiR88558DTTxd2fMnIyiZWKfK0JikxgQFdm9iizVppiHQtAzQYONfl2IQOd5oqMdU68h8zTq7i3GT33DUh7BgyxLp39Wuvkbb1EBPmrQwbLUdnC0Un2o1fQIbb2lHzf/9k7rTHzYPHjbP+IRfCh5tugk8+MdsXLSKtUkMGzV5vys4FSIiPDVnfU2mh6DtWen7z87Fc+fty14HVq8O2bUYZTSE8+eUXaNPGvH/82mtJGzmJQZ//Zjstg7RQ9IjVmtOG0xvyZdP25sH/93+WDeeFMGHuXOtAfP/90KGD5TYZB5J9Gx5Y6Xli+9vJU24/df/9Jy0xw5ncXGNPsXsgrlABXn+dCfN/DzstR30wdqw5JSbEu9gntr+dXHcBZ2VF6v7TyOfoUcse1vvKV+HCCpdTf+Bc0x2VO5J9a3+s9Lz1tHp83tyigMvEibBvXxC9E/zGq6/C2rUm8+hWN9Pwzd/CUstRH4zBEPDaEV14+eYWhUldO6vXYdb5V5gHv/KK9RqFYG9GjIAdO0zmUZ3vZ3+5ihYnmJHs2/DASs+vXnIbJ2PcUmSOHDGWnoTwYscOGD7cZN5YswHvpfQgz4elVztqWYKxE6nJSYXTXHla82rbWzgR63rHzLFjRkUXIXxYswZeftlkXlw/mS+adfTpKSSTPvxw1vOOKjX5X4tu5kFvvAG7dgXfOaHkPPaYMdPlRD6KwV0fJS/G+55iu2pZgrEbzuuG/1Q+jekXXm0eNHWqUfFFsD95ecbaUp7r+tHxuDIM7fJwkXuKHdtkkhITQprwIZQcZz2/cfHNHIsv6zrgxImw2wIT1aSlwRz33XgwI/kq1tb2HGDDQctetzZFG+5rCZPa3EivdfOodNLJnpNj9MV8//3gOicUn0mTLHtTv9q2FzssmoOAIdhlAzsH2jMhCDjrObNiVd67qDuPrHBL4nvnHXjqKWjUKMjeCcXi8GHjrtiNfZWqWRZ4cRAuepY7Yzfc1xIOlK/C2y2vM43TH3wAGzYEyy2hJOzaZdmX+t+6DZnR7gbLU+w6hSWUDHc9T2ndk4Nl3Xra5uVZrkEKNmP4cMslhW1DxpBb0XqLWjjpWYKxG1ZbI95umcp/Ca7/2UprGDo0mK4JxaVvX+Nq2o1+nR+ie6v6hck94TCFJZQMdz0fKleRKa17mgfOnAnr1gXRM6FYrF6NfvVVk3lxwxR2X3GNS0XFcNWzTFO74fiPmzBvC7uzstHA0bLlmXTxTQxb8Lbr4LQ0+PlnaN066H4KXpgzBz7/3GT+3wXdWH5GU/7enBkWU1dC6XDWs2O7y3sXdeeeVXOocTTLdfDQofDll0H2UPBKQd6Hys93MWfHlWXw5X3Q839n2cDOYRN0PSF3xhakJiexbGBnto+/uvBqa0byVWRUsuhMM3hwkL0TvHL4sNHFxY3MComM73g3YM99hkJgcOjZoeXsMuV47eKbzQO/+gqWLQuyd4JX3ngDLKq7vdquF7sSz4gYLUsw9oJjmutEXBleaXeLecCCBfD998F3TPCMh7WlZy/rzaGCPcV23GcoBBbnKeuZF3RjV+Wa5kGDB5urOgmhIyPDcjlw82ln8lZBLk+kaFmCsRecu8LMPu8ydpxWxzxIBGwfVq0yqvO4sajBhXxVUOI0nJI6BP/hrOWcuHimdbnbPGjxYpg/P+i+CR54/HHLvI8hXR8hNzYuorQsa8Y+4NwVhpTjcLPbFNfKlcb68XXmrGshiOTmGn2K3daWcsuV47UbnkQpRW0bd20RAo+LlvO6wXlfwia3DpGDB0OXLpHc1zo8+Oor+Owzkzmt1dWsrtPM1h2YSoIE4+Jyww2QnGxUdXJmyBDo3h1ivVeAEQLEa6/B6tUm8+beT/Lp87eFwCHB1sTGGtX0erplV69ebQSBG6y3vwlB4OhRy7yP49VOI/XbD0itWjUETgUWmaYuLjExMHas2b5pE8yYEXx/BIMdO2DYMJN5U4363FLhYtLWZITAKcH2XHcdpFh0pxw2zJhpEULDyJGWteSHtb+HtL+OBd+fICDBuCR07QodOpjtI0YY5fWE4KI1PPqox3q1h/OVLVumCTZAKeuL682b4YMPgu+PYOz3fuklk3nJmS34pEmHiNWyBOOSoJR1t5e//zbqVgvBJS3Ncn/ojOSrWJPUFJCtTEIRXH45dOxoto8cKRfXwSY/37KW/InYeIZ2NWrJR6qWJRiXlLZt4ZprzPbRo43WbEJwOHTIsl7tvxVd69VGyvYHIQB4ujvesQOmTAm+P9HMlClGISU3Xr/4Jv6uWhuIXC1LMC4NY8aYMy737jV6HgvBYehQYy+iGyMv683hghrEztsf0tZk0G78AhoMnEu78QtkLVkwuPhiuPZas33MGLm4DhZ79sCgQSbz1mp1mNLaSKZz38oUSXqWYFwazj8fevUy2ydMgP37g+9PtPHLL/D66ybz9w1bMr/pJYBrfdq0NRkMmr2ejIIypxlZ2QyavT6sBSz4kdGj5eI6lPTrBwcPmsyDuz3Kybh4qpaPd6k1HWl6lmBcDCyvwp57DuLcdogdPAjPPx8aJ6OF3Fxjbcmt2Mqx+LKMuOIh8jh1Fe1cn9jR29ZBdk5exCaECJ6x1PL558MtFlX25OI68MybBx9/bDLPOu9yfql7LgDHc1zrB0SaniUY+4jHq7DDCXDffeYTXn3VmHYRAsPLL8PatSbzxEtuJ6OKUebQWZhpazIKGwW4E6kJIYI1Rd5RPfusXFwHm2PH4KGHTOb9CZUZ1/GewseRrmefgrFSqptSaotSaqtSamAR41oqpfKUUhG3W77Iq7Dhw6FcOdcTsrNh1KggehhF/PWXsY3Mjd9Ob8i0lO4utt1Z2YU/vp6I1IQQK0TLXrR89tlycR1sRo+G7dtN5jGd7uNA+SoutkjWs9dgrJSKBd4ArgSaAbcopZp5GPd/wDx/O2kHPF1t7c7Khtq1LTN6eest+PPPAHsWZWhtVOY55rrxP0/FMLjrI+TFuFZAq52YYPnj6yCSatt6Q7RsUKSWwSj4YXVxPXp0gD2LQjZsMJYB3Fjd4AI+O9fc4jSS9ezLnXErYKvWepvW+iQwE+hhMe4x4DNgrx/9sw2errY00G78AuZeeSdUrux6MDfX8g5OKAWffgpff20y/9Xrbv6od46LzSHMoqatwqn5uB8QLeNZyzFKGWvIH2zhjxvvMg+YOhW2bQuwd1GEY0+xe6WzMmXY/8IrJJRxXS6IdD37EoyTgJ1Oj3cV2ApRSiUB1wGT/eeavXBuv+ZORlY2Ty3YxcbbHzQdy//wf9zxxNthm+FnK7KyoG9fkzm75hn0aZxKdk4esQXZsM5Z1J5+fJMSE8JWuCVEtIxnLedpXbiGfGeNzuRUqOg6IDeXb27oI1r2F+++a9k/evNdDzPi97yo07MvwdiqdYl7v8CXgWe01tZzB44nUqq3UipdKZWemZnpo4v2wLn9mhXZOXn0rXkp1KjhYo9Bc+fct8M65d42DB4M//xjMj/R7l7+OG58lfO0NmVRW/34hvN0Vinwm5YhfPXsrGUFhT/4zuyJr8D7F/c02buu+Z53pnwlWi4te/fC00+bzH9XS6JH5Q6FyVnRpGdfgvEuoK7T4zrAbrcxKcBMpdRfwA3AJKVUqvsTaa2naq1TtNYpNdyCVjiQmpzEsoHmdQwHf2ZjdG9y44qtP3POX7+Fbcq9LfjpJ5hsvlmb36gN8xq3dbG5b29w//F1vsqOMvymZQhvPTu0/NLNLcjz0Iv85XOv5kAF1wSiGDSPLpgmWi4t/fvDgQMm86ArHuJEXBkXW7To2ZcWiiuBRkqpBkAG0Au41XmA1rqB499KqWnAV1rrNP+5aR/S1mSgMN9OQMFaVJ8+ZAwfQ9Ih1zuFAYunc2vtpkHxMeLIyTH6FLv9aB4pk8CIy81LA2BO0nHpYxu9iJad8JaVW+X06rze+kaGLXjbxd71jxW8uXEt4PnCXCiCH36w7HA3u3knltdvYXlKNOjZ652x1joXeBQjs3ITMEtrvUEp1Ucp1SfQDtqNCfO2WAZihTF9QtmyTLvibtPxi3esp8Pfa2V6qyS8+CL89pvZfMnt7KlsfUcWrtsbAolo2RVfsnIXdOzJ7kqnmY4PWDxdtFwSjh+33FOcVa4iYzpZbCkrIBr07NM+Y63111rrxlrrhlrrMQW2yVpr07yh1vpurfWn/nbULnjK5NNQWHJxdrNObK1WxzSm/6L3GfTZryLi4rBtm1GIwY1fzzibaRdZNOogMtaPAoVo+RTesnIBDuTH8Eo7c1Wudn+v44uJEpCLzbhx8McfJvP/dbqX/yokWp4SLXqWClzFpKgrtBbPzmfAp+v472Q+L3S4w3T8/H+20vG3xbLe5Ctaw8MPG3s8nchTMQzq+ij5MeaMWPf6tYLgCU9ajlWKJz5eS7+P15KVncOn513OtoKOQc48vmAaE77dHGg3I4fNmy1bz65MasbM8y63PCWa9CzBuJgUtcUpKzuHnDxjEvvbxm359YyzTWOeWjKDf/dLFxifmDnTqFnrxnsXXcsGt882KTGBl29uwZrhXVwKyUdKRxfB/xS1xQlO5YXkxcTyYvvbTeNa7Pmd5ukLA+hhBKG1MT2dk+NizomJZXDXR9DKCEWxShUmZTnrORq07EsCl+CEc9MBT7VRAVCKCR3u5INZw13MDffv4rrffqDd+Ip0alqDHzdnsjsrm9qJCS7p+1HPgQPwxBMmc0alGpY/jO5Z7o7kHMeaoKP+MCCfsQC4anl3VjYxSnnMrJ7b9BIeWvEpzfe6Fv14avEHNHy6JWdUEz0XyfTpsHChyTy11fX8UePMwsd5WvPyzS1cPrdo0bLcGZcAx7YIq02bziypn8xP9c4z2Z9Y+hH79h1kxoodEdP+y+8884yxF9GN4V36cKyM6/SiAtPnFmkdXYTA4NDy9vFXk+8hEANoFcMEi6Wnxvv+pvvGRWRkZYuePbFvn7GVyY2/E8/gtbY3m+zun1u0aFmCcSnwmuGnFC92vNtkTjqcyW1rvjHZI/ELViKWLjXqervxTeO2/HB2a5Ndg+lz81p/WBDc8KbnhWelsKZec5O939IPic/LMdlFzwU8/TT895/JPOyKhzgeX85kd//cokXLEoxLQVHrxw5ue+Jm6N7dZH94xSwqnDhmskfaF6zYnDxp1Kt143CZBEZe3tvjae6fm6cf1mjYIiGUDK96VorkGW+azPUO/svNv35neUrU63nRInjvPZN5zjkdWHzWRR5Pc/7cokXLEoxLgaMSjFU5PXCqlTpmDPluY047dpB7078wnRNpX7BiM2ECbNxoNne4k38t9ns6cP/cIrVknhA4fNEz7dtDt26mY48tn0m5nOMme1Tr+cQJ6GPevn6obAVGdX6gyFOdP7do0bIE41KSmpzExJsuKPrLcu65ZFx5nencB375nMTsQ9bnRCNbt1r2gF5bqzEzkq8qfOz+U2n1uUVqyTwhsPik5zFjTOedfmQ/d63+yvM50cjzzxvbmdzNl95FZsWqACQmxHsNtNGiZaWLSFoIJCkpKTo9PT0krx0I0tZkFGZlWmZSbttGfpMmxLi1C/tf+5sY0vZOyb7UGq64wiiV50SuiuHau19mU82zAEOoPS9KiqqsVaXUKq11Sqj9KIqo0/NNN8Enn7icc6xiZVL7f8Afx2Oj4ntZJH/8AeedZ9wdO7GmVhOuv2MCWsWQEB9bWFylyM86wvCkZwnGweSRR2DSJFdbuXJ8m7aEUWsORc2X0ZIZM+AOc7bqH3c8yN3Nborqz0aCsQ3ZsgWaNTN68jozdChp1/eJquBiQmvo0gW+/97FnB8by92PvMmShNrR+bkUIMHYDuzZAw0bmipKzWzRjYFdHy187LhijJov6n//QdOmxhYIZ848EzZsgAoVQuOXTZBgbFPuu8/oyevEsfhydHr4Hf4td6rbU9Tp+cMP4XZzLQCeesrICYlyPOlZ1oyDSa1a/H7zPSbzDevmU3//qX11Ubcl4umnzYEYjFmEKA/Ego0ZMYK8eNd2f+VzjvPg0o9dbFGl5/374cknzfYzz4SRI4PuTjghwTjI9K3XhUNlXQNMnM7nyaUfutiiZkvEokWmuwvAWJO76iqzXRDsQr16fNbS3KzktrVfU/uQa8GaqNHzwIGWxXp4/XW5sPaClMMMMltOxDG5dU+eXjzdxd5902Imt76BjacbiUrOqf1ek0nCBPf38Uyn+nS32PpA5crw8stFnhuun4EQWTx/4fVcvfJrKjhtayqbl8vjSz/imaseL7Q59Bwp32PL93HsL8tiPVx/PVxzTdHnhuFn4G/kzjjI1E5M4L2LupNp0S6s/5IPANfUfkdd1nAvs2f1Pv5+eoTl1gfGj4datYo8Nxw/AyHyKJtUi3dSepjsN/z2Aw3/2wmc0nOkfI+t3sewT9Zw8G6LfsSVKsGrrxZ5bjh+BoFAgnGQGdC1CVSowGsXm2uyXvbnSrpl/emS7BEpdVnd38dZ/+2i97KZ5oFt2pgqcEXKZyBEHgO6NuGDdjeSVa6iiz1W5/Pkkg9d9sRGyvfY6n3cvvxTqmy1eB9jxkDSqbveSPkMAoFMUwcZR5B9qaxi58o06h781+X45I2fQovHCh9HSl1WF3+1ZvT8SZTNc91zTVwcTJ0KMTGez/XBLgjBwtBzGz787RYe+dZ1ivbqLUu5uksiFGg+Ur7H7v7WzfqHvlYX1ikpRj/yIs71Zo8m5M44BKQmJ7FoaFfqvvq8+eCSJfDtt4UPvdVlDZc+n87v44bffqDtjl9NYz5odyMNPtxheh/RUptWCE9Sk5N45LOXXZZWChkypPCfkahltGbU/DdJyHUt7qFjYrinzX00GPKty3sRLXtGgnEoue02aG7uAsPgwYXFBIqqyxpO6y+O91H12EEG/2jOnt6ZeAZjLupp+T6ipTatEMaULw/Dhpnt334LixcDkadlgKs3L6Xj9lWmMdNTuvNjhbqm9yJa9owE41ASGwujR5vta9cWltorqi5ruKy/OLIns3PyGPrju1RzqsftYIhbOzXn9xEttWmFMOe+++Css8z2wYNB64jTcpUTxxjxw1TTmH+r1OD5tre62BzvRbTsGVkzDjU9ekCrVvDLL672YcOMLQHx8aQmJ1l+We2+/pK2JoORczaQlW30er3473X0/O0H07gvzrnUsp2a8/vw9BkIgm0oUwaefdZc1nXZMvjmG7jqqrDVMsDQtPV8uGIHjpqN/Re9T82jB0zjhnXuzdGy5U12x3sRLVsjd8ahRikYO9Zs/+MPeP/9Ik+18/qLY9rNEYjL5p5kzLw3TONOVqrCmMut26nZ4X0IQrG45RavS09W2FnLYOjZORC32L2F29d8bRq359Iu/NCkreVz2OW92BWfgrFSqptSaotSaqtSaqDF8duUUr8W/FmulLrA/65GMJddZvxx59ln4bi5R6qDYK6/FDe5xH3a7eGfZnHWgd2mcaPb38Xe8okmu6wjBQbRcoCJjbVssci6daYuT84Eey21JHp2BOLY/DzGznudGFz7GuQmlOe2828jz6LfgejZO16DsVIqFngDuBJoBtyilGrmNmw7cKnW+nxgFGBeSBCKxurueNcuU5cnZxFNmLeFnhcluay/9LzIWH/yZ0ZmSZJLnKfXGu7byUMrPjWNWVf/XD4493KTPVYpWUcKAKLlING9O7RubbYPGwY5OS4mh577fbyWsnExVC0fH1AtO16zNHq+J/0Lmu3dbhozqdOdbCtf3WQXPfuGL2vGrYCtWuttAEqpmUAPYKNjgNZ6udP4FUAdfzoZCXgtAdeqFVx3HXz+ueuJY8fC/fdD5cqFInLccWZkZfPZqozCL7rV8UGz1wOUSgiekkv6z1rnMsb5vdVOTCAjKxul8xk773XK5LvuKc6Pi+epyx5GK/P1YH5Bsovgd0TLfsCrlh1LT+6zXX/8AdOmwQMPFD6Ps16zsnNIiI/lpZtbAAREy+BZzyPnbCj8HfGk56SDe0119AFo0YJXm19p+XqiZ9/wZZo6Cdjp9HhXgc0T9wHflMapSMPnK9HRo00FL/jvP3jxRcB79ZpAZWR6SiLJ05oBn6xjwKfrTO+tU9MaJMTHcuOv39N61wbTuTEDn+HY2dbTVrUTE8Jmz2WYIVouJT5ruXNn66Wn554rXHoqSq+BzK72pOes7ByGpq23fH+dmtYgIS6Gkd9PpnyO655ilIIpUzi9WkXL562SEC9a9gFfgrGysFk2QVZKdcIQ8DMejvdWSqUrpdIzMzN99zLM8VlYzZqZMzEBJk6EzEyvGZeBysgsKvEiJ1+Tk+f6dcjOyePHzZlM7FiLoYveM5909tkweDCdmtYwfbkS4mPp1LRG2Oy5DDP8puWCMVGn52IFSU9LT2++CRSt10BmVxel549+3mn5/n7cnMm0qhlcsfUX80kPP0xafBJHT+SaDsXHKI6ezBUt+4AvwXgXUNfpcR3AlImjlDofeBvoobX+z+qJtNZTtdYpWuuUGjVqlMTfsKRYwho5EuLjXW1HjsC4cV4zLgOVkWmVXOKN3VnZXPXeBCpnHzYffPNN0jbv57NVGS6RQAE9L0rix82ZYbHnMgzxm5YhOvVcLC23agWpqWb72LFw+HCReg1kdnVRiVRWyVcAB//9j9YvjTQfqFWLr256xGXnhIOq5eOpWC7O8mJdtGzGl2C8EmiklGqglCoD9ALmOA9QStUDZgN3aK1/97+b4U2xhFW/vqlRAgCTJjH8gkpFZlwGKiPTsVE/VlndWFnT/q+18KHF2tIdd8Dll1veYWjgx83eZwCEEiNaLiXFDpKjRxvTuM7s2wcvvlikXgOZXZ2anETV8vGWxzxpvP/SDyHD4m72lVcYt3yPScsA5cvEkXUsx3wOomUrvAZjrXUu8CgwD9gEzNJab1BK9VFKOZrRDgeqA5OUUmuVUukB8zgMKbawhg41yus5c+IEXWdPLbJ6jafqNkCp12xSk5OYeNMFpvcRH6OIj3UVcNmcEzxnsaeYatWMKXc8izEjK5sYDz8Isk+xdIiWS0+xtdy8Odx+u9k+cSKpdct61HNRlar8kU8x4trmlu/jltZ1TfZz/9nKnau+ND/JVVfBDTcUefGc6CHoi5bNKO1hWiLQpKSk6PT06NF5sRtqDxliXnOKjYWNG6Fx42K9rnNWJhii87bVwJO/VnaA/rPWFU5xPbV4Oo/+NMv8pO+8A/feCxgXBxkWIlZYL2L64nOkopRapbVOCbUfRRFNei62lrdvhyZNTNuaeOopmDCh2K/tLz2DeReEQ+MOPcfm55E2/UnO+/dP1ydMSDB+i+rX96jlxIR4jp7IJSffVdHxsYoJN1wQlVoGz3qWYGxXsrKMOrcHXMvNfdW0PePuGun9B6AAT0JJSkxg2cDOlueURPANBs5FA40y/+braX2Jz3ebtrr0Uvjxx8IpO6vX8BSIY5Vi4k0i3lD7URSiZy888oipZsCJuDJc2nsqsXXr2lbP96R/wYgf3jIPGD8ennmmyOcvFx/DAYtp6sSEeNaO6FLU24xoPOlZymHalcTEwi+7M9dsXkLi5vU+ZySWZP21JNsqaicmoHQ+4+a9bg7EZcrA5Mkua2dW03CeLgtln6IQ9gwdatxNOlE29ySPLZ9ZrAzjYOr5jEP76L9khvnguefCk08WPvQ0pe5pvfhgtrU92pFgbGO+bN+TfZXMFW0GLP7A54zEkmRllkTwA7o24Y7fviMlY5P54KBB0LSpyZyanMSygZ3ZPv5qlg3sTJLN6/MKQklJ+yefD1r1MNlv+vU7zjyw25Z6fu7Ht6h40mLMlCmmHR/uWk5NTrJ9vW27IcHYpqStyeDpb7by8sU3m4513L6KVjt/8ykj0SrhJD5GcexkrscEkJKIKLVWLMMWWzS2aNzYCMZOeEpAkV6nQiTimMZ94YIeHCpbweVYfH4e/QoqWpVUzwoj8dFTMleJ9LxrNV02LzMf6N0b2p5qBFFUMpnouXhIMLYRzl/s/rPWkZ2Tx8fnX8GOKqebxj696H1qVyln8SyuuE8hJSbEg4IDx3I8bsIvkYj69SP+iLlPMVOmQNmyLu/RU0EP6XUqRApWWj6YUIkpra43je2+cTFN92736Y7RWSPgmmfhabq72Ho+cgQefdRsr1nTWCt2eo9FFecRPRcP6WdsE9yTIByZyTmx8bzY/nZe/mqiy/iUjE28UMHzGpOnjM924xeYNuc7N/6GU7Vvfc4Y/fZbmDnTbL/rLujY0cVU1PqVY0uHiFUIZzxpGeC9lO7cvepLahzLKrTFoHl66QwOPfaZx+dz1+KygZ0tk7nctQwl0PPIkbBjh9n+0ktQtWrhQ29adry26Nk3JBjbBKsvtoM553TgwZ8/45zMv1zsF7/7Ijx6u6medVENI3xdP/ImIscPxP7MA/zw3qPUdh9QvTq88ILX1/FmF4RwoygtHyuTwBsX38TIH1ybYXX+42c4vgP3UuH+0DIUrWfnYN8hezfvvfGyecr0iiuMXs1eXqcou1A0Mk1tE4r6AufHxDKxvUXN6nXr4OOPTeairlj9kVThPD31+LKPqH3gH/OgF1+E007z+XUkqUOIFLwFo/+1uJLdlWuaDwweDG5bTYOpZZWfxxOfTCQmz+1ComxZY1uWWzEe0bJ/kWBsE7x9gVed347/zr/IZP/r4f50GDPfZZ2oqCtWfyRVOH4gmu7dzv2/fG4e0KmTdcMLJKlDiHy8ablC5fL808+i/8bChdzRa4xLIlSwtAxw67p5JO+xyOgeNsxo7uKGaNm/SDC2Cd6aMZQvG0/1V8zTvvWz9nDJkjkuiRNFXbFaJVUUt4n57qxsyuUc5+UvXyBO57seLFvWtKfYGUnqECIdr1ouE8eFQ/tabvd7avF0Mg4cK9RzMLQM0CTzL55eOM084JxzYMAAy3NFy/5FKnDZiLQ1GTzx8VrLYwrYPv5q6NoV5s83HV9cP5nj8eXQaOJjY8jN1zj/38bGKJrVrkztKq7i3n0wm427D5GX732sg0W/Z3LpRottD2D0ax02rOg3KhQLqcAVfvik5U8/hRtvtBwzv1EbwNiGmKu1y+x1jFI0r12ZWm67KfYcPM6G3YfIdxrsaayDxX9kUmV/Jhf884f1G1m0CDp0sD4mlAgphxkmeC13l54OLVuGwDPvHGrQiMqb1pO2cV/xavcKRSLBODzxquX8fEPLq1eHwDsfuPdeeOed4tfiFopEymGGCV7XYVJS+PHc9iHwrGjyypalctqnpG3cV+TeQ0GIFrxqOSbG3AzGLjRuDC+84HUvseA/JBjbDF/WYfKeG012XFnPTxICYidNgvPPL1EdXEGIRHxaU+3ShcyW7ULmoyW1axtLYVWrip6DiOwztiHe9vhefl0Hlr4xnUpjR3Hujo3EuidRBZnpHW9hxO+nU9vDtBzI3kMhOvFa9EIpanw1m73X9qTmL0uD55gH9iSezl3dhnD0oz8Z0DVO9hIHEQnGYcolvW+C3jfBoUMsnfktH3+3npN5p4JyrFKgcE3MUopyZWI5eiK3yOeuUDaOoydyiUGRb9FLqVoFoyn6z9v3M/xPxZZKRrnOjKxsj20QZe+hIHigZk1q/rwEDhxg4dzlfDLnF3JyT92NlomL4eKG1fnpz/84meuk8RhFufii9Xxpkxqs33WQ/UdPEqOUS3KXg2oVynBdchJvrs7k55qNyC5TDgqmoxPLx1u2QRQ9+x8JxuFO5cpc0vsm9rVs55JkcexkrqWIvOEpmDpw9EElOYknxy8go5LrFbK2eA7ZeygIPlC1Kh1vv5qs5i1MCVMT5m0h46zi3Y0mJsSzJDef7CTramBwSs9PzttCRp0zXI5l5+RRNi6GhPhYU69i0bP/kWAcIbhPhzUYOLfYz+EpEMcWXFG7Z1J6mqrSGOtjkn0pCMXHamq7n4dtUp5IiI9FKSzLclrp2dPzH8zO4aWbzRcHomf/I8E4QqmdmOBx/dYd5WV8vtbGvkgfX6Nw64YgCH6hOHpOKgiYngKslZ49Pb+juIgE38Aj2dQRircqQA6SEhMKG4InFVHtx9fXkCksQfA/xdHzsoGdSU1OKlbtaNFy6JFgHKFY9TGOj3UtUekutuIKUsrhCUJwCLSeRcuhRypwRRG+VNKRajv2QypwCVaInsMTKYcpCGGKBGNBiBxKVQ5TKdVNKbVFKbVVKTXQ4rhSSr1acPxXpdSF/nBaCC5pazJoN36Bzx1fhPBDtBwdiJbDD6/Z1EqpWOAN4ApgF7BSKTVHa73RadiVQKOCP62BNwv+FsIERw1ax1YIRw1aQKa1IgTRcnQgWg5PfLkzbgVs1Vpv01qfBGYCPdzG9ACma4MVQKJSqpaffRUCiNSgjQpEy1GAaDk88SUYJwE7nR7vKrAVdwxKqd5KqXSlVHpmZmZxfRUCiNSgjQr8pmUQPdsV0XJ44kswVhY296wvX8agtZ6qtU7RWqfUqFHDF/+EIFGcPYlC2OI3LYPo2a6IlsMTX4LxLqCu0+M6wO4SjBFsjGz6jwpEy1GAaDk88SUYrwQaKaUaKKXKAL2AOW5j5gB3FmRitgEOaq33+NlXIYDIpv+oQLQcBYiWwxOv2dRa61yl1KPAPCAWeFdrvUEp1afg+GTga+AqYCtwDLgncC4LgUJq0EY2ouXoQbQcfvjUKEJr/TWGSJ1tk53+rYFH/OuaIAj+RrQsCPZEalMLgiAIQoiRYCwIgiAIIUaCsSAIgiCEmJA1ilBKZQJ/exl2GrAvCO4EgnD1XfwOLr74fabW2tYbeSNcz+J3cIl0vy31HLJg7AtKqXS7d6vxRLj6Ln4Hl3D1uySE63sVv4NLtPot09SCIAiCEGIkGAuCIAhCiLF7MJ4aagdKQbj6Ln4Hl3D1uySE63sVv4NLVPpt6zVjQRAEQYgG7H5nLAiCIAgRj62CsVLqRqXUBqVUvlLKY1aaUqqbUmqLUmqrUmpgMH304E81pdR3Sqk/Cv6u6mHcX0qp9UqptUqp9GD76eRHkZ9fQZOAVwuO/6qUujAUfrrjg98dlVIHCz7ftUqp4aHw0x2l1LtKqb1Kqd88HLfl511aRM/BQfQcXAKmZ621bf4A5wBNgIVAiocxscCfwFlAGWAd0CzEfj8PDCz490Dg/zyM+ws4LcS+ev38MBoFfIPR27YN8LMNvhu++N0R+CrUvlr43gG4EPjNw3Hbfd5+et+i58D7KnoOvu8B0bOt7oy11pu01lu8DGsFbNVab9NanwRmAj0C712R9ADeL/j3+0Bq6Fzxii+fXw9gujZYASQqpWoF21E37Pj/7hNa68XA/iKG2PHzLjWi56Ageg4ygdKzrYKxjyQBO50e7yqwhZLTdUHP14K/a3oYp4H5SqlVSqneQfPOFV8+Pzt+xr76dLFSap1S6hulVPPguFZq7Ph5Bws7vnfRc+ARPbvhUwtFf6KU+h44w+LQEK31F748hYUt4CnhRfldjKdpp7XerZSqCXynlNpccJUVTHz5/ELyGXvBF59WY5SaO6KUugpIAxoF2jE/YMfP2ydEz6LnEiJ6diPowVhrfXkpn2IXUNfpcR1gdymf0ytF+a2U+lcpVUtrvadgOmKvh+fYXfD3XqXU5xhTNcEWry+fX0g+Yy949Ulrfcjp318rpSYppU7TWtu9zq0dP2+fED2LnkuI6NmNcJymXgk0Uko1UEqVAXoBc0Ls0xzgroJ/3wWY7giUUhWUUpUc/wa6AJbZeAHGl89vDnBnQVZgG+CgY9ouhHj1Wyl1hlJKFfy7Fcb3+7+ge1p87Ph5BwvRc+kQPduPkn3eoc5Mc8tCuw7jquIE8C8wr8BeG/jaLVvtd4xsvCE28Ls68APwR8Hf1dz9xsgaXFfwZ0Mo/bb6/IA+QJ+CfyvgjYLj6/GQCWtDvx8t+GzXASuAtqH2ucCvj4A9QE7B9/u+cPi8/fC+Rc/B8Vf0HFy/A6JnqcAlCIIgCCEmHKepBUEQBCGikGAsCIIgCCFGgrEgCIIghBgJxoIgCIIQYiQYC4IgCEKIkWAsCIIgCCFGgrEgCIIghBgJxoIgCIIQYiQYRygFjc//LSjV57Ddr5Ra6MO505RSo91sM5RSe5RSh5RSvyul7g+A24IgWOBvPTsda6SUOq6UmuFHd4USIME4sokDHvfTc40D6mutKwPdgdFKqYv89NyCIHjHn3p28AZGnWghxEgwjmwmAE8ppRLdDyilmiqlvlNK7VdKbVFK3VRg7w3cBjytlDqilPoSQGu9QWt9ouB0XfCnYVDehSAI4Ec9FxzrBWRh1N8WQowE48gmHVgIPOVsLJjq+g74H0bj9FuASUqp5lrrqcCHwPNa64pa62udzpuklDoGbMYolP51UN6FIAjgRz0rpSoDzwH9g+e+UBQSjCOf4cBjSqkaTrZrgL+01u9prXO11quBz4AbinoirfXDQCWgPTAboxuPIAjBw196HgW8o7XeGUBfhWIgwTjC0Vr/BnwFDHQynwm0VkplOf5gTGWd4cPz5Wmtl2I0zH4oAC4LguABf+hZKdUCuBx4KbDeCsUhLtQOCEFhBLAamFjweCewSGt9hYfxvvTVjEPWjAUhFJRWzx2B+sAOpRRARSBWKdVMa32h370VfELujKMArfVW4GOgb4HpK6CxUuoOpVR8wZ+WSqlzCo7/i9E8HQClVE2lVC+lVEWlVKxSqivGutSCYL4PQRBKr2dgKsaFdIuCP5OBuUDXILgveECCcfTwHFABQGt9GOgC9AJ2A/8A/weULRj7DtCsYMorDePK+iFgF3AAeAF4Qmv9RTDfgCAIhZRYz1rrY1rrfxx/gCPAca11ZtDfhVCI0tqXGUlBEARBEAKF3BkLgiAIQoiRYCwIgiAIIUaCsSAIgiCEGK/BWCn1rlJqr1LqNw/Hb1NK/VrwZ7lS6gL/uykIgj8QPQuCPfHlznga0K2I49uBS7XW52NUdZnqB78EQQgM0xA9C4Lt8Fr0Q2u9WClVv4jjy50ersCozOSV0047Tdev7/FpBUEoYNWqVfu01jW8j/SO6FkQQosnPfu7Atd9wDe+DKxfvz7p6el+fnlBiDyUUn+H6KVFz4LgZzzp2W/BWCnVCUO8lxQxpjfQG6BevXr+emlBEPyM6FkQgotfsqmVUucDbwM9tNb/eRqntZ6qtU7RWqfUqOGXWTdBEPyM6FkQgk+pg7FSqh5GO707tNa/l94lQRBChehZEEKD12lqpdRHGF0+TlNK7cLoGBIPoLWejNFfszpGM2uAXK11SqAcFgSh5IieBcGe+JJNfYuX4/cD9/vNIyBtTQYT5m1hd1Y2tRMTGNC1CanJSf58CUGISkTPgmBPbNfPOG1NBoNmryc7Jw+AjKxsBs1eDyACFoQwQ/QsCL5hu3KYE+ZtKRSug+ycPCbM2xIijwRBKCmiZ0HwDdsF491Z2cWyC4JgX0TPguAbtgvGtRMTimUXBMG+iJ4FwTdsF4wHdG1CQnysiy0hPpYBXZuEyCNBEEqK6FkQfMN2CVyOpA7JvhSE8Ef0LAi+YbtgDIaARayCEBmIngXBO7abphYEQRCEaEOCsSAIgiCEGAnGgiAIghBiJBgLgiAIQoiRYCwIgiAIIcaW2dSCEOlI8wRBiAz8pWUJxoIQZKR5giBEBv7UskxTC0KQkeYJghAZ+FPLEowFIchI8wRBiAz8qWUJxoIQZKR5giBEBv7UsqwZC0IQcE7yqJIQT3ysIidPFx6X5gmCED449JyRlY0CtNOxkmo5rIKxZKAK4Yh7kkdWdg7xMYqq5ePJOpYTtd9l0bMQjrjrWUNhQE6KhmxqyUAVwhWrJI+cfE35MnGsGd4lRF6FFtGzEK5Y6dkRiJcN7Fzi57V1MHa+co5RijytXY47stZEvIJdSVuTQYaHZI6MrGzS1mREzfdX9CyEO4HUs22DsfuVs7twHUgGqmBXHN/hooiWu0HRsxDuBFrPXrOplVLvKqX2KqV+83BcKaVeVUptVUr9qpS6sNheWGA1FWCFZKAKdsWX73Cw9xeHUs/ls/6j/Mmig63oWbArgdazL1ubpgHdijh+JdCo4E9v4M0SeeKGL1fIkoEq2Blf7/KCfDc4jWDrefdu7v3sVZZOvo87V8/1OEz0LNiZQOvZazDWWi8G9hcxpAcwXRusABKVUrVK5I0T3q6Qq5aPZ9z150X89J4Qvvh6lxfMu8Gg6nnPHnj4YWjQgPvSvyAh9wT3r/ychJPHTUNFz4LdCbSe/VH0IwnY6fR4V4GtVAzo2oSE+FiPx8uXiRPhCrbG23cYbHk36D89HzsGU6bAyZOFptOOHeTWdd+ahoqeBbsTaD37IxgrC5tldoZSqrdSKl0plZ6ZmVnkk6YmJzHu+vM8HpdED8HuOL7DSYkJKIytD7e3qefy2IZ3g/7Tc8OGcOutJnPvX2ZTNveki030LNidQOvZH9nUu4C6To/rALutBmqtpwJTAVJSUqzTKR0cP07qok8o8903PHxFX9NhSfQQwoHU5CS7BVtv+FfPgwfDhx+CU/b06Uf2c+Ov3zHjwqsLbaJnIRwIpJ79cWc8B7izIAuzDXBQa72nxM+WmwvvvAONG0O/fly1ej7t9mxyGeKYCkhbk0G78QtoMHAu7cYvIG1NRuneiSAI/tXzOefADTeYzA+t+JT4vBzA0HOnpjVEy0L4cvRoqZ/Cl61NHwE/AU2UUruUUvcppfoopfoUDPka2AZsBd4CHi6VR9dcA/ffDztPLVu9sv5TkqqUc5kKAGNPV0ZWNppTFXxExILgmaDrGWDIEJMp6XAm1//2I0mJCfS8KInPVmWIloXwJDMTzjwTHn8c9u4t8dMo7WHzfaBJSUnR6enp5gPTp8Ndd5nt33wD3U7tyGg3foFlJZTSliQTBLuhlFqltU4JtR9F4VHPDnr0gDlzXG0NG8LmzbR7YbFoWQhf+vWDl182/l2hgvH4qaegShXL4Z70bL8WirfdBs2ame2DB0N+fuFD6QkrCGGExd0xf/4JM2eKloXwZccOmDTp1OOjR2H0aONPMbFfMI6NtX4ja9bAp58WPpSesIIQRrRqBV0smmKMGUNS5bKWp4iWBdvz7LMuW/cA4+74qaeK/VT2C8YAqanQsqXZPny4keCF9Z4vG+7ZFATBwbBhZtvmzbwY96doWQg/Nm+GadPM9ieegNNPL/bT2TMYKwVjx5rtW7YYa8pY7/my4Z5NQRAcXHIJXHqpydzqw0mMu+5c0bIQXgwb5rJ0CkDVqiW6KwY7JnA5c9llsGCBq61uXfj9dyhXLnDOCYKNiIgELgc//ACXX262f/EFdO/uf8cEIRCkp1vP3o4fD888U+Sp4ZPA5cyYMWbbzp0weXLwfREEofR07gxt2pjto0e7FAYRBFtjlZBYqxY89liJn9LewbhNG2NLhDtjx8Lhw8H3RxD8iXviRzSglPXa8cqV8N13wfdHEIrLwoUwf77ZPmwYlC9f4qe1dzAG44pZuZXLzcyEV14JjT+C4A/S0uC88+DHH0PtSfC58kq40KJN8qhRcncs2ButYdAgs/2ss+C++0r11P6oTR1Yzj3X2Hs8Y4arfcIEeOghqF49NH4JghtpazKYMG8Lu7OyqZIQj1KQdSyH2okJDOja5FRC0uHDxnTWrl3GtO2dd8ILL0CNGqF9A8FCKRg6FK6/3tW+dCksXmyZ5CUIwcRZy7UTE+jUtAY/bs6k2cqFvLVihfmE556DMmVK9Zr2vzMGGDkS4tyuGw4dguefL3wodaqFUJK2JsOlPGtWdg4HjuVYl3ccMcIIxA6mT4emTeHvv0Phemjo0cO40HZn1ChA9CyEDnctZ2RlM2PFDvbsP0L/xdPNJ5x3HtxyS6lfNzyCccOGRr1qd159FXbvtvzwpLatEEwmzNtCdk6ex+PZOXlMmLcFVq+2XmJp3Rrq1QughzYjJsY6CeaHH1g0bY7oWQgZnrTcY+Mimu6zuGAeO9b4PpeS8AjGYCyOu29nOn4cRo+2/PAKf/wEIQj4Urrxn/1H4MEHzXsTExLgjTfMuRGRzo03Gt3Z3IgfP1b0LIQMKy3H5+XQb+mH5sFt28LVV5vtJSB8gnHt2tZp42+9Rdz2bZanSG1bIVj4Urrx0c3fGfsT3Rk+HBo0CIBXNic21qg570bbLT/T/J+tJrvoWQgGVlrutW4e9Q7+ax48bpzfLqLDJxiDsZm6cmVXW24ug3752HK41LYVgoVVeVZnzsw+wKMLppkPnHsu9O8fOMfszq23Qv36JvNjP5k1LXoWgoG7lhNOHqfv8pmmcf+27QgdOvjtdcMrGFevbllqrOu6Hzj/wE4Xm9S2FYKFI/MyOyeP2IKr5MSEeKqWjy8s7/i/jTOJP3rEfPLkyRAfH1yH7UR8vOVWkW6//0TjzL8KH4uehWBgpeXHN35DjaNZprGnv/6iX187vIIxwBNPcKKq63YmpTX9Fp3KcqtaPl5q2wpBwTl5ECBPaxLiYxnZvTlrhndh+/irWXZeNknfzzWf3Ls3tGsXZI/tRdqaDDrurceeiuYtio/9NAuQWtVCcLDS8um5x7h3+afmwTfdBMnJfn39sAvGaVsP8WJKT5O905afaLHbSPA4npNvOi4IgcBr8uDRo/DII+YTa9Y06thGMY4fv7+O5DGltVnTV29awjmH9rju0RaEAGGl5buWzaLM4YOuA2NjC7fg+ZOwC8YT5m1h2vndyKhkLpAwYPH7gGReCsHDU1JRRlY2DQbO5cOr7rXeP/zii0aHlyjG+cfvowu6klk+0eV4DJr7lswULQtBwV3LNY7s5570L80D77nHchdAaQm7YLw7K5sTcWV4pZ15k3W7v3+l7V9rC8cJQqApKqmoyd7t3LzEYorr8suNxKUox1mjJ+LL8lar60xjUjf8SMxf24PplhCluGv5seUfk5B7wsV2Ijaeb3v2Dsjrh10wdnxgn513GX9WM09dPb34fdBaMi+FoOApi1rpfMbOe5047bZkUrYsvPlm9O0ptsBdozOSr+JAuUoutjidT/81nwfTLSFKcdZy3ax/uGXdt6Yx0y+8mlFrA9OkKOyCseMDy4uJ5cVLbjcdb7HnD67Z/otkXgpBITU5iXHXn0dSYgLO4fXWtd9y4W6L6dUhQ+Dss4Pmn51xv5A5ViaBd1qau7R1Xz3faJ0qCAHEWctPLv2Q+HzX9ePDZRJ4s82NAZt1Dbtg7PyBfdO0HVtqm3/Y+i18n/4frZKatkJQSE1OYtnAzmwffzVJiQnUOHKAZxa9bx7YtCk8/XTwHbQp7hcySYkJZD/4EIfLVXAZF5Obw3vXPSJ6FgJOanISy66pyXUbF5qOvd3yOvaXrxKwWVefujYppboBrwCxwNta6/Fux6sAM4B6Bc/5gtb6PT/7WkhqctKp7MqOcXDVVS7HG2buoPvGRXx+bmcGzV5feI4gBJoBXZsQf/tzVD5x1HxwyhRjmjqE2FrLDjb3M1qnOnHLunlManMTg2afLDxPEALCkCGmVp7/JVTm7ZapAd3v7vXOWCkVC7wBXAk0A25RSjVzG/YIsFFrfQHQEZiolCpdPylf6dYN2rc3mZ9c+iHxeTmSWS34naI6CqVmbuDqjYvMJ91zj1+r9ZQE22vZwRNPQAXXu+NyuSe5b+XnomfB7zjrufdDr8GcOaYxky6+icTTqwd0v7svd8atgK1a620ASqmZQA9go9MYDVRSSimgIrAfyPWzr9YoZXTNcAvIdQ/+y83r5jPjwqsls1rwC2lrMhg5ZwNZ2TmFNkdHIYDUptWMHtvuVK/u0u4zhNhbyw6qV4eHHzZ6ljtxx5qvmdK6J7uD6owQqZj0rDX3fP2WeWDdugyb+xrD3BsV+Rlf1oyTAOfsiV0FNmdeB84BdgPrgce1dk8jDSCXXGKaqgbou3wmCSePS2a1UGocBSqcA7GDwru10aNhm0XTkokT4bTTguClV+yvZQf9+3MizvWGvELOce5JnyN6FkqNlZ7b/7WGi3esNw8eMcLcMTAA+BKMrfZgaLfHXYG1QG2gBfC6UsqtowMopXorpdKVUumZmZnFdNULbmtMADWPHuD+tXMls1ooNd76FZffusV0JwdAx45w552Bc6x4+E3LEGA9n346u24075a4Z/WXDG57hn9fS4g6THrWmgGLp5sHNmkCd90VFJ98Cca7gLpOj+uAaaboHmC2NtgKbAeauj+R1nqq1jpFa51So4a5glapSE6Gm282mR9bNZvUBhUsThAE3ylqqUPpfF74YRLkuN01lyljtz3FftMyBFjPQMPnnyUv3vXuuNKJY1y9eLbfX0uILtz1fOWWZZxv0baTUaMgzqc851LjSzBeCTRSSjUoSOToBbivcO8ALgNQSp0ONAGsmwwHkueeM+qGOlHm0EF44YWguyJEFkVNjd62YQEX/PWb+cDAgcZ2JvsQPloGqFOH2HvvMdtfegmOWHTAEgQfcdZzbH4eTy2ZYR500UXQ01wzPVB4DcZa61zgUWAesAmYpbXeoJTqo5TqUzBsFNBWKbUe+AF4Rmu9L1BOe6RxYyNr1Y1jEybS8rEZsk9RKDGeKm2dlX+U4Ussdv40amTZGjCUhJWWHQwcaLrAZv9+xl3bV/QslBhnPfdc/wMN9+8yDxo7FmKCV4pDae2+ZBQcUlJSdHp6uv+feOdO44fwhGtN0fcuupZnL3+QhPhYaccmlAhHr9PdWdnUTkwwugm9NAg++MA8+IcfoHNnv7yuUmqV1jrFL08WIAKmZzAusKdNczFllk/kkj7vEFO+vOhZKBFpazJ45av1fDjhDmofdrve7NgRFiwIyBKTJz2HXQUur9Sty9YbzAkzt679hqSDe2WfolBinCttLRvYmdT9m60D8e23+y0QC/Bdj3vJU64/VTWOZXHLunmiZ6HEpCYn8WPFTeZADDBuXNBzPSIvGAOP1+/GkTKua3xl83J5fNn/AOnoJPiOxwIfx49b7ymuWtXYyiT4jZGbc/iqqbmwz4M/f0aZ3BzRs+AT7lr+aukWYyrane7doU2boPsXkcF4Y25Z3klJNdl7/raAhvt2yj5FwSccexEzsrLRnCrwkbYmA8aPhz/+MJ/0/PNQs2bQfY1kdmdl8/rFN5nstY78xw2/fS96FrxipeXtQ0bDPre7YqUst8kGg4gMxrUTE3i7VaqpHVuszmfA8g9l37HgE1Z7i7Nz8vh4xvfGNJYb+1q0gnvvDZZ7UUPtxAT+qHEm3zRuazr28IpPebrzWSHwSggn3LVc9dhB7l7xmWlc2jmX0m5uZkgSAyMyGA/o2oTcipV5s80NpmPdNi0lNf+fEHglhBuW059a0/fTiXDypIs5JyaWe1rfS9q6PUHyLnpwZL6+3tZcR6DOwX/pYdFhRxCccdfywys+odJJV1tOTCwT29/uOgMWRCIyGDtas33X+Ub+qVjNPGDIkOA7JYQdVtOfPX9bYFkyb2qr61mfWEeSiQKAQ89ZTc7lh4YtzQPGjoU8z9XRBMFZy7UOZXLn6rmmMR9d0I2diUZ1t1AkBkZkMIaCTLlhV3LGhDHmg/PmcfOt42WfolAk7nuLE7MPMWThO6ZxfyeewWsFd22STBQYHJnsl8141Xzwjz8YcdsI0bLgEWct9132EWXzXKvlZceVLdSwg2BrOWKDcSH33cfROmeazAMWTyfjwLGQTEcI4YHjjiwpMQEFjFo+nWrHDpnGDbviIY7HG4XkJZkosKSVrcvyBskm+60/fMDgz9aJlgVLHFpuk7OPG9d/bzr+Xsq1ZLrNogZby5EfjOPjeaHtrSZzSsYmOv+5UvYpCkVSuLf4qkpcm/6t6ficczqw+KyLAALaeFwwmDBvC6+0MWdWN9m3g/YblomWBY+kJicxc9fXxLk1ITtZqQrvt3P9ToVCy5EfjIH361/Mphr1TfYBi6ejdL5MLQpFMufnbfx1wx0me07Fyrx13WMoICkxQSpBBYHdWdn8XO88fq7T3HTssZ8+ZveBYyHwSggLVq+GWbNM5j/ueohBt7UtnAELlZaD044ixNSqWoGJ7e/g7dmjXOznZP7FtZuWsKpttxB5JtidtDUZ/P3Ms3TP3GE6Fv/8eL58yJyxLwSO2okJZGRl83rbm2k9a7jLsXP//ZOe/64HrgmNc4K9sUjczayQyB3lWzMcWDYwtFXzouLOeEDXJiw752JW1zZPO/Rf+qHsUxQ88r8PF9Bn6Ucm+4a658CDD4bAo+jGkYizpH4ya2s1Nh0fvPpTCFG9fcHGLF4M35qXmV5t24v9Kt4WyxtREYxTk5MY1/N83rvqAdOxMw/spsfa+SHwSrA9WvPYZy+ZMi9zVQxPXf5wUDu6CAaFSXVVy5uyXwGqrV9tFPgXBAdaW3ZQ21HldGZe0BWwxy6IqPk1SU1O4rW3+sPll5sPPvccZIf+P0OwGR99RPu/1pjM77RM5VDjZiFwSIBTSXXvfPIsXHCBeUCIyhkKNmXuXFi+3GR+6ZLbyImNB+yxCyJqgnEhVoXBMzJg0qTg+yLYlwMHoF8/k3lX5ZpM6XiHZE3bAaVg6FCzfeFCWLo06O4INiQ/33KteMtp9fii2aWAfXZBRF8wbtkSrrvObB83Dg6Z95AKUcrAgbB3r8n8SmpfhvdqKVnTduH66+Gcc8x2uTsWAGbOhF9/NZnfvfJ+dEysrXZBKB2iZIeANiP3xsaNcO655kSPESNg5MiQuCTYiOXLoV07s71nT/j006C746kZuZ0IqZ4//NDoIe3Ozz9Dq1bB90ewBzk5xoXan3+62tu0MTQe5H7FDjzpOfrujAGaNYM7zPtGefFFc0stISpw9DptNOAL/rze4oe9UiV45ZXgOyZ45+ab4eyzzfYxFqVwhYjHoeUh1zxhDsRgLFWGKBAXRXQGYzDugOPjXW2HDxt9aoWowrnX6X0r02j473bzoDFjICn0U1mCBXFxltmyzJkD69YF3x8hZDi0/F/mAfoun2kecMUV0KlT8B3zgegNxg0aQO/eZvvrr8OuXcH3RwgZjl6ndbL+4fFl5j3FpKTAww8H3zHBd+64A+rVM9vl7jiqcGj5rtVfcfqR/eYBVgm8NiF6gzEYmZgJbintJ07AqFHW44WIZHdWNmjNqO/eJCH3hOvBmBiYMgViY61PFuxBfLyRdOfOp5/Cpk3B90cICbuzsql8/AgPrbDI7ejZ07iwtinRHYzPOAMef9xsf+cd2Lo1+P4IIaF2YgJXbVlGp22rzAf79oULLwy+U0LxueceqF3b1aa1re+GBP9SOzGBB375nMTjR1zseSrG9jdZ0R2MgbndbudQuYquxrw8GD7c+gQh4hjUthYjf5hqsmfXPMMoCCOEBWmb/uOV5FTzgf/9zzqRR4g4hqZU4970L0z2XdfeaL0Fzkb4FIyVUt2UUluUUluVUhZzQaCU6qiUWquU2qCUWuRfN/1P2poMWjw7n0e++YvJra43D/joI0n+iBKumfUGNS3WlxKmvGlkUUcQkazlJz5ey5tNOrOvfBXXAfn5Rh0BIeK5cs67VMg57mLLiy/Dma89HyKPfMdrMFZKxQJvAFcCzYBblFLN3MYkApOA7lrr5sCN/nfVfzgy7rKyjZrD713UnczyieaBVtV9hMjil1+sq6917w6pqUF3J5BEg5aPx5fj7ZYWRX3efx/+/jvI3glBZft2mDzZZI595GHr5D6b4cudcStgq9Z6m9b6JDAT6OE25lZgttZ6B4DW2ly6yEY4Mu4cZJcpx+sWRef56isefOg1GgycS7vxC0hbkxFEL4WAk5trdF5yL/5SoQK89lpofAosEa9lgA+SryLLfekpN5fPevUVLUcyI0cahT6cqVgRBg8OiTvFxZdgnATsdHq8q8DmTGOgqlJqoVJqlVLqTqsnUkr1VkqlK6XSMzMzS+axH7Dq0PHRBd3YVbmmyX7P3KlorcnIymbQ7PUi4kji1Vdh7Vqz/bnnwuJKugT4TctgDz1baflo2fK8m+J+jQHXrPyGGof/Ey1HIhs2wAcfmO1PPgk1agTfnxLgSzC2KlXiXkMzDrgIuBroCgxTSpmajWqtp2qtU7TWKTVC+AFZdeg4GRfPy5fcarK32fkbHbavBiA7J88WfS8FP7BjBwwbZra3aGFkUEcmftMy2EPPnrrtTLvoWg6XcT1WNi+H3r/MBkTLEcfQoeYZrurVoX//0PhTAnwJxruAuk6P6wC7LcZ8q7U+qrXeBywGLHqb2QNHg3J3ZjfvxB/V65rsTy35oPA/2g59L4VSojU89hgcO+ZqV8rYUxwXFxq/Ak/UaPlQuYpMv/Aak/22td9S/WgWIFqOGH7+GdLSzPZBg6By5aC7U1J8CcYrgUZKqQZKqTJAL2CO25gvgPZKqTilVHmgNWDbnfaFDcrdrqrzY2KZ2N5cl/j8f7bS7XejH6Yd+l4KpSQtzSiV6M7DD0d6Y4GI1rICYp1qDr/TMpVj8WVdxifknuC+9DRAtBwxWK0JJyWFXdU8r8FYa50LPArMwxDlLK31BqVUH6VUn4Ixm4BvgV+BX4C3tda/Bc7t0uNoUO4+b/dt47b8eoa56PxTiz+gYiy26HsplILDh427Yndq1YIxYwqLzEdiok+ka3n7+KvJd5qq3F++Ch+2uNI0/s7Vczkj95hoORL44QdYsMBsHzGCtM37w0rL0dlC0Yl24xeQ4TZd1X77aj6YZS76sXrERC4c+WSwXBMCQb9+8PLLZvusWaSd3ZZBs9ebsnOrlo9nxLXNQ9bzVFoo+o67nmsc2c/SyfdRNs81y3Zz7340nfJisN0T/InWRjvEX35xtTdqxBcz5jPwy8220zJIC0WPWK05LamfzE/1zjONvfC9V4za1UJ4snq1kUHtzlVXwQ03WG6TAThwLEeyb8MEdz1nVqzGzAu6mMY1nfUeHDoUTNcEf5OWZg7EAKNG8fyCbWGn5agPxo41p8QEp3aKSjGhg8WOjh07YKq5bKIQBuTlGV268vNdzNlxZelQ7wbqD/raNEPiMk6yb8MCKz1Pad2TkzFuSXlZWfDGG8F1TvAfeXmWRZk21DyLs9dUCEstR30wBkPAa0d04eWbWxQmda2r04zvzrZI5hk9Go4cMdsFe/PGG7DK3AjilXa3sKOKeX+5FZJ9Gx6463l35Zp8ft5l5oEvvghHjwbfQaH0zJgBGzeazBM63Emu5Q4+V+yoZQnGTqQmJxVOc+VpzcT2d5Dv/h+7d6/1VKdgXzIyLK+iN592Jm+3TPX5aST7Nrxw1vPrbW4kV7n93O3bZ2xlE8KLEydgxAiT+ec6zVl41kU+PYUdtSzB2A3ndcPNNRswp1kH86Dnn4f9Fo2rBXvy+ONGFrUbg7s+Sm6sb3uKE+JjJfs2DHHoeWfiGXzR7FKLARPg+HGzXbAvU6da1hl//tK7jFoBXrCrliUYu+E+ffHSJbeRE+NWVODgQUPEgv356iv47DOT+X8XdGN1HeuWakmJCYVTnKrg8bjrzwtpBqZQMpz1POnim8wzXf/8Y/QvF8KDI0eMpUI3fmjYklV1mlmcAIkJ8WGh5YgtNVRSaicmuCz+/121NrPOv4Lb1n7rMi735ZeJ69vX2J8q2JOjR+GRR0zmI1Wq8crl91qe4rhqTk1OsqVgheLhrOc/q9fl66aXcM3mJS5jjo0eS/kHHoAyZULholAMNj4zimZ7zb1LXut8t+X4hPhYRnYP7VYmX5E7Yzestjq92rYXx+NchRp3/DiMGRNM14TiMnKkkQHvxohOD3DFJU0Lk/UcVZvsfNUslAx3Pb9+8U2mMeX/2Q3TpwfTLaEEzF34G3XeMWfA7+zWg7sf6hH2epY7Yzcc/3ET5m1hd1Y2Gvi30mm8f+E1PFhQZL6QqVONQuQNGgTfUaFo1q2Dl14ymRfXT+azxpeQtDmTZQM7h8AxIZg46zkjK5vNNRswv1EbuvyxwnXguHFw992RXJc87DkwYjSVT7hmv+fExNK/eU9mRcBMltwZW+BcXs9xtTW5dU9TFxhyciyz+oQQk5dn9CnOc930fyI2nmFdHgKlbLm1QQgMDj07tPzaxRa9y7dtg5kzg+yZ4DO7d3PD8s9N5lnnX8HKuGohcMj/SDD2gmOa60D5Krzd8jrzgBkzjF6agn2YOtXo5OLGq2178XfV2oA9tzYIgcWh5fW1GrGwgcUWmDFjTBdwgk0YNYpyuSddTMfjyvBq214Ro2UJxl5w7grzTstUDlSo4jpAa+u+uEJo2LPHaJ3mxh/V6zK19fWAfbc2CIHFWcuvte1lHrB5s2XmvRBitm6Ft982maddeA2Hqp0eMVqWBRIfcMmsrbvT3LD6889h5Upo2TL4zgmu9OtnbD1z46WeT5Iba2xxcGRLC9HHKS13ht1fw48/ug4YMwZuuAFi5D7FNowYAbm5LqZDZcrzRZfbwypByxtR37Wp2Bw/Do0awa5drvYrroD580Pjk2Dw7bdwpbllHvfeG9Z7SaVrU4D48UfobJHE98UX0L178P0RzPz6K7RoYcxAOjNqlGVVvXBAujb5i3LlYLi5vSLffWe+yhaCx7Fjls3ED1Sowtzb+4XAIcH2dOwIbdua7aNGmX/8hZDwz6P9zf8XNWvCE0+ExJ9AIsG4JNx9t3F37M6gQSLiUDF6NGzfbjKP6ngvTy3YZcuWaUKIUco63yM9HebNC74/gguL30vjjCXfm+y/3vUIVKwYAo8CiwTjkhAfD889Z7b//DPMmRN8f6KdDRssy5Mur3c+s5t3tm3LNMEGdO0KKRYrAKNHy4V1KNGaSqPM20Z3Va5J38oW3fQiAAnGJeWmm+CCC8z2oUNle0Qwyc839hS7JXiciI1jaJeHCwvHy75iwRKlrNcely2DRYuC749gMG8eydt/NZlfvuRW/j4Smb+vEoxLSkyMdTnM336T4gHB5N13jR9ON95scyPbqtcpfOzYi5i2JoN24xfQYOBc2o1fINPXAlx7LZx3ntk+alTwfRGMC+zBg03m36vXY3bzTi77iiNJzxKMS8NVV0G7dmb78OFw8qTZLviXvXvh6adN5j+rJfFmmxsLHzv2FaetyWDQ7PVkFJQ5zcjKZtDs9WEtYMEPxMTAkCFm+4IFsHx58P2Jdj75BNasMZkndridsmXLFO4rjjQ9SzAuBqarsLW7YexY88Bt28J6K03Y0L8/HDhgMg/t8jAnChp7VC0fX7gX0blXtQNZT45OTFpueDE0sSgeYdGuTwggOTmWSXVrazVifqOL6XlRkku98UjSswRjH/F4FVapIXTrZj5h1Chju40QGL7/3ihF6sZnzTvx05mn1vLLl4kjNTmJtDUZLq0xnZH15OjCUstfbGTVbQ+ZB3/zDaxaFXQfo5Zp0+CPP0zm5zvchVaKHzdnAkSknn0KxkqpbkqpLUqprUqpgUWMa6mUylNK3eA/F+1BkVdhVmvHe/bAG+Z2X4IfOH7cek9xuUqM6Xy/i213Vnbhj68nIqW2rS+Ilj1ruV9MM+sObHJ3HByys+HZZ03mpWdewPL6LYDI1rPXYKyUigXeAK4EmgG3KKWaeRj3f0BEbtDzdLW1OysbLrwQbrzRfHD8eMvSjEIpGTfO8up5XMd72F/etXZ47cQEyx9fB9FUp1q0bOBJyzsPn7Ssa05aGqz3/OMv+IlJkyDDvN47ocOdhf+OZD37cmfcCtiqtd6mtT4JzAR6WIx7DPgM2OtH/2yDp6stDbQbv4Dvez1irme7fz9MnBh456KJzZuNYOzGvuTWfHVRVxebQ5hFTVtFUm1bHxAt41nLMUrR+Pca/Fulhvmg1eyX4D8OHbLU9beNL2ZdbSO4RrqefQnGScBOp8e7CmyFKKWSgOuAyf5zzV442q9ZkZGVzWNrsvn7WvPd8dHxE7h66Gdhm+FnK7SGPn2MJA8n8uPiefzS3hzL1cQW7CtOSkwoFKanH9+kxISwFW4JES3jWct5WnMyNp43Wl5vOpY/axaXPTAl7LfP2JaJE+G//1xMeSqGlwruiqNBz74EY2Vhcy9N8zLwjNa6yN3YSqneSql0pVR6Zmamjy7aA+f2a1Zk5+TRr2kPKFPGxV4h5zjXz/sgrFPubcP771sWYpjU8jqWlT0dMH5QHVfQDmFa/fiG83RWKfCbliF89eysZQWFF3AOPj6/C3srVHWxxWjNwytmhf32GVuSmQkvvmgyf968E1uq140aPfsSjHcBdZ0e1wF2u41JAWYqpf4CbgAmKaVS3Z9Iaz1Va52itU6pUcNiKsjmpCYnsWygRZeXAtZQGR4yZ2TevmYuVf/bE7Yp97Zg3z546imT+e/EM3jt4ptdbO7bG9x/fJ2vsqMMv2kZwlvPDi2/dHML8tzKXp6IL8vUVteZzumxYSF1s/4J6+0ztmTsWDhyxMV0MiaOly+5FYgePfvSz3gl0Egp1QDIAHoBtzoP0FoXpiAqpaYBX2mt0/znpn1IW5OBwnw7AQVrUfcO5uikKVTIOV5oL5uXS99lMxlUuW/Q/Iw4nn7aNI0FBXuK48ua7O7rSi49qaMX0bITRWXlftjiKh755TOqHj2VgBmn83loxScM7vZY2G6fsR07dhiJW258mHwlu6qcXvg4GvTs9c5Ya50LPIqRWbkJmKW13qCU6qOU6hNoB+3GhHlbLAOxwpg+oWZNPrnEvBvkxvXf03B/hkxvlYRFi+C990zmOed0YEmDCy1PCdftDYFEtOxKUVm5VKjAnrvNH8kN63+g1qFMYpQSLfuDZ581VSs8Gl+ONy6+ycUWDXr25c4YrfXXwNduNssED6313aV3y754uiLWUHilVmPkILJ+SiPx+Kmpl1idzxNLZjDg9HrgNFbwwokTRtKWG4fKVmBU5wcsT4mE9aNAIVo+hbes3GYN23Jy+mTKHD51d1wmP5cHf/6MkVf0KbyrFi2XjO9nL6LTe9NwT6V7N6UH+5zW7KNFz1KBq5gUlckHxtTX2OX/8GYb893xNZuXcNbOLbLeVByef97YzuTG/116F5kVq5rszuUvBaEovGXlpv15mBktu5uO9/p1PjWOHJC141KQtiaD3KFDidX5LvaschV5y2m9Ppr07NOdsXCKAV2bMGj2epfpLYWxvanFs/M5ejKXnDzN+xdew73pczj9yH6X859a8gH3nmGuMiNY8Mcflvs7V9duwv9auJYgTUpMcMm4BEPwE+ZtYXdWNrUtjgvRjZWW42MUx07mUn/gXBRQ+dyruGnpp1Q8eeouulzuSe5f+TnjOt0ra8clZM67X/LupqUm+5Q2N3K4XEWTnqNByxKMi4lzkfKMrGyXZK6s7FP7X4/Hl+O1tr0YPd81OaHTtlWk7PyNduMT6NS0Bj9uzozoL1iJ0dooeXnihIs5V8UwuOujaHVqUkeBKcvdkZzj+KF1bEkBmVYUDJy1vDsrmyoJ8Rw9mcuBY4aONXAwoRIfJF/NQz9/6nLu7Wu+ZnLrnhyqkEiDgXOpnSh6Lg53fzXVZPu3YjWmXXg128df7WKPFi3LNHUJcGyLSEpMsEzmcvDx+Vewwykj0MHTi6aTceAYM1bsiJj2X37nf/8zmkG48Xar69hc07V+cJWEeNO4SOvoIgQGh5a3j7+aCmXjyMkzK/rtlqlkx7lm7FfIOc596V+Qp3WhfkXPRePolNXr1nF0+MvcIvHVtr04WSbB9JlFi5YlGJcCb1NUObHxvNj+dpO9ZcZGOm5LN9kj8QtWIg4cgCefNJl3Va7JK21vMdmPnsw1CbjIWuKCYIGn78Z/FRJNyyIAd676isrHj1icYSB6PkVhp6wDx3h60fum438l1uLj87uQp7XpIiZatCzBuBT4km7/3fmdONTQnAk4YPEHKLfkBYi8L1iJeOYZ2Gsuizy0y0NklylnsufkadOPnqf/m2jYIiGUjKK+G1NaXc+JWNdVvconj3HXqi+LfE7Rs4Hj7vbyrb9w4W7zBcqL7W8nt+Dzdb+IiRYtSzAuBUXVqwajzN6YG1pQeeL/mY4137uNqzebExgi7QtWbJYtg7feMpnnNmnHwoYtPZ7m/qMXqSXzhMBRlJ73VqrOF8nmu+N70+dQ4YTnvuVRr+cCdmdlE5Ofx4DF5rvijTUb8OU57U3jHUSLliUYlwJHWbZEizXLhPhYJt50gZFg0L07+89NNo15cskMYvPzXM6JtC9YscjJgQcfNJkPl0ngucus9xQ7cP/Ri9SSeULg8KbnKiOHQpzr3XHV44e5Y83XpvGOc6Jaz07UTkygx8ZFNNm3w3RsQoc7XRIyHeMdRIuWJZu6lDjKshWZeq8U1V55AS67zOXcsw7s5oE/FzGlUWfJvgSjc8uGDSbzhA538m+l0wBj6wkKl0QbTz96kVgyTwgsRem5a3IS3HknvPuuyzn3r0xjfucbaXt+Xcmm9sDTnRtw4f/9z2T/u2kyK5q0htxTS3ZWeo4GLSuti8oHDhwpKSk6Pd2cxBTRXH45/PCDq61OHeZ8spD/W/h3dIt42zY491zIdp1uPtDsArrfNoFdh04WfjZAxO85dEYptUprnRJqP4oiavS8dSs0aQL5bvkeL78Mjz8ORMee2GLzxhvw6KNm++LFpFU8K6o+L096lmAcTH75BVq3NpnHXH4/b12UWvg4IT42IqdhPKI1XHUVfPutqz0mBlauhAut609HCxKMbcbtt8OHH7qYMitX55IH3iKhUoXCwj8Ook7P7hw9Cg0bwr//utq7dYNvvgmNTyHEk55lzTiYtGrF7k5dTeY+y2a5JIFE3ZaITz4xB2Iw7jSiPBALNmTwYHDrgVzj0H/cuP57srJzTHuVo07P7rz2mjkQg9E6UShEgnGQefr8G8l36/FePfsQ96V/4WKLmi0RWVmF03su1KkDzz0XdHcEwSvNmkHPniZznxWfEpeXa3lK1OjZnQMH4P/Mu0m4+WZINie1RjOSwBVklpU7g8+bd6Tnhh9d7A/8MpvpF15NVkJlwDWbMFLWoCzfx9tj4Z9/zINfew0qViz63DD8DIQIYcgQ+NS1RGadQ3u5bsOPfHL+FabhDj1HyvfY5/fx/PPGBbcT+bGx3FLnKn4pKCMarp+Bv5E74yBTOzGBly+5jZwY131zlU5m89AKQ9zO2YSFlWvCvMye1fv46LVP0G++aR7cowekphZ5bjh+BkIE0aIFXHutyfzwilku2xXhlJ4j5Xvs8/vYswdeecV0/qfnX8HPcdXD+jMIBBKMg8yArk3YVyOJjy4wFxC4a/VXXKCOuCR7REpdVvf3EZufx4i5r6LcEwgrVDDuios4F8LzMxAijKFDTaYGB/bQY8tSqpaPN+2JjZTvsc/vY/Ro0+6IE3HxvNiml/dzoxCZpg4yjiD7bt5d3Lj+exJyT3UlKpd7ki+yFkLyzYW2SKnL6u7vPelf0GzvdvPAUaOgbt0iz/VmF4Sg0KoVdOkC8+e7mEf+9gUvfj7e2A3gRKR8j316H9u2wVRzZ6bpydfwT+XTfH7OaELujENAanISc8beSMKTFolLb79t7GUsIFLqsjr7m3RwL08u/dA0Zkvtszl7T0PajV/gMm0VKZ+BEIEMG2YyVd72O3z+uckeKd9jX97HzscGQK5bMlulSnze9Y5iPWc0IcE4lDzzDFSu7GrLzYWRIwsfeqvL6mhL1mDgXFMQsxOF70Nrnv3uTcrnuPYpzkcx4PKHyY2JNa0jRUttWiEMueQSuPRSs330aGP/vBMRp2UnnN/Hglnfk/S1+WJk02296X19K9GyByQYh5Jq1WDAALP9f/+D9aeaZ3uqyxouCSGOzMvsnDyu/OMnLv9zpWnM9Auv5tdajQsfO68jRUttWiFMsVg7Zu1amDvXxRRpWo4t2Gvtrsf4kSOIcev0vq98Ffqe0VG0XARSgSvUHDkCZ50FmZmu9u7d4YsvrM8poN34BWRYrLUkJSawbGBnf3pZItLWZDByzgaysnMAqHDiGN+//RC1jvznMu6fitW44v43OVy2gotdAdvHXx0sd22LVOCyOVpD27awYoWrvXVr+OknU4EQK+yuZYChaev5cMUOlzBrqi7200/GZ+HGc50f4L2WPUTPSAUu+1KxorFn0Z05c4wvdhHYOSHEcaXvCMQA/ZfMMAVigNe6P2oKxCDrSEKYoJT13fHPP8P33/v0FHbWMhh6dg/E4JYJrbVRncyNjEo1+DD5StGzF3wKxkqpbkqpLUqprUqpgRbHb1NK/VrwZ7lS6gL/uxrB9OljyiAGjC92ETMXwUwIKe56lvv2h3P/2cpdq78yjfvnks7MbWS+kpZ1pMAgWg4QV11lXVFq1CifTg92cldJ9Ozpl6jwguG772DhQtPxly+5hZiEBNGzF7wGY6VULPAGcCXQDLhFKdXMbdh24FKt9fnAKMCc0y54pmxZl6StQhYuLPLK2iqRIj5Gcexkrl+TQEqynuV8RR+bn8e4b18jVrt2usktV47bWtxJ1nHXrMuq5eNlHSkAiJYDiKe74yVLYPFir6cHS8tQej27UzsxAbTmwBPm/Jet1erwY8tuomcf8OXOuBWwVWu9TWt9EpgJ9HAeoLVerrU+UPBwBVDHv25GAXfeabRmc8ft7tj5inbCvC30vCipMBkiMSEeFBw4luPXJBBPm/z7z1rn8bmdr+jvXP0V5/37p2nMlI538GcF857D8mXiRLiBQbQcSFJToXlzs330aI+nOPTc7+O1lI2LKSwWEigtg2c9j5xj7iXuwNMdusK4kOCzz6i66VfT8Yntb6dsQlnRsw/4EoyTgJ1Oj3cV2DxxHxB9fbG84HVaKC7OekorPb1wz6LVFe1nqzIY0LUJ28dfTYWycQHpGOPpqjhPawbNXs/QtPWm9+a40j/j0D76L5lhPvm883j5XOtkDrusk0UgomU/4FHLMTHW+R/ffWesH1s8j7Oes7JzOJ6Tz0s3twiYlsGzvrKyc0hbk2H5/qzu3BVwW5t6pJ53uuWswK9nnM03TdqJnn3El2BslQpouXyglOqEIeBnPBzvrZRKV0qlZ7pnD0cwPk8L9exp3TJw6FDIy/Nahi5QSSBFrVtl5+Tx4YodpvcGMO768xi/+B0qnnR7faVgyhQqVvK8ThYuey7DDL9puWBM1OnZq5ZvugkaNTKfaHGhXZSeA5nQVZSeR87ZYPn+ANOWpJdubsHo1PNg+nTYYr5ImNDhTlCKKgnxomUf8CUY7wKcs4vqALvdBymlzgfeBnporc0ps4DWeqrWOkVrnVKjRo2S+BuW+FzLNSYGxowxP8GmTTBjhleBBioJxOqq2BlPGZapu1bTccMS8wkPPkhauXocOW5uNxcfq+jUtEZY7LkMQ/ymZYhOPXvVcmysZUYxc+fCmjUupqL0HMiErqISqbKyczy+v9TkJJYN7Mz28VezbGBnY+r5+HGODTFXIfup3nksqZ9MfIzi6Mlc0bIP+BKMVwKNlFINlFJlgF7AHOcBSql6wGzgDq317/53M7wp1lVu167QoYPZPmIEZ1a0DogOgQaqUpVjo36sD/slHRzYu59jvR8yHzj9dBg7lgnztpCTb74pq1Amjh83Z0ZEQX0bIlouJT5p+bbboH598yC3C+2iAm4gq86lJidRtXx8sc7JyMq2DqCTJ1P+H9P1HBM63ElsTAwVywVuuj3S8BqMtda5wKPAPGATMEtrvUEp1Ucp1adg2HCgOjBJKbVWKRWlu/+tKdZVrlIwdqzZ/vffvHI4vUiBeqpuA5R6mig1OYmJN11guW5kxRNL/0f5fyxe5+WXoWrVItetrIofgKwllxbRcunxScvx8TDQtGsMPvsMNpxKkioq4Hqr1lVaPY+4trnlaxcVpE13tIcPW87kfXd2a1YnnUO+1hw4lmM6DqJlK6QCVxBwrDM53+2ZKte4c801pnJ6nH46X85ewvjFO31uTl6i18Zz83B3e6emNfhsVYbL8zf7dxtz3n+COLetTHTpAt9+C0p5rDik8LCIib2qEQUTqcBlH3zW04kT0LAhZLgFyltvhQ9PNUnxpLNSv77Fee6vA1ja3J/fGRcNPvccjBjhcjwfRbd7X+P3GvVJTIjnYHaOpZ6jVcvgWc/SQjEIOPcm9lV0jB5tDsb//sumQaPhyrt46eYWPm0XKGqNy9P57oJ3TuJITU4ynZdyZjWe+HgtADH5eYyd97o5EJcrB5MmFZYGHNC1iUn0RQViKQIi2AGftVy2LDz9NDzu1plt5kwYOZK0I+VdniMUeh53/XkeA6JDz+4U3tHu2wcvvGB+reYd+b1GfRLiY1HKWs+F26EEF6QcZpCwTH4oihYtoFcvk/nBnz/j8D+ZPidBlCQrs7hN0FOTjb3OALeu/ZYWeyyWGocNM+4UnM5xn4Yrao5GigYIdsFnLT/wANSs6WrLz+fvp4aVOEEx2Hp2p3A6ftw4Y5raiZzYOF665LbCKfUsD1PUGkTLFkgwtjHf9XqYXLcG5VVOHKX3L7N9ToIoSVZmSQQ/oGsT6h0/yNOL3jcfbNYMnnrKZHb/UfP0A5CUmCDiFcKPhATL733trz6l+j7XpCc76tljfsquXfDGG6Zz4vs8yJLJ9xVeoHjyyZPOox0JxjYlbU0GfdOPMuu8K0zH7k3/ghpHDviUBFGSMnslEXxqchL/2ziTyiePmQ9OngxlyhQ+9JSAIn2LhYijTx9OVkl0McXn59FnxaemoSXVs8K4u/aUzFVSPXtsdfjss8aauBPH4stybZWOLq8vei4eEoxtimNq6dW2t3Ai1jXDsXzOCR756WOf9hy6i8qXMnslEtE331Dnuy/N9vvug/btCx8WVTRBep0KEUelSkxrdZ3JfOP67zj98D4XW3H1DK55Fp6mu0saFC2n43//Hd57zzT2vYu6sz4vweX1Rc/FQ7KpbYRzxqPz/8qQBW/zwMo0l7EnY+JYOGcJXa5u4/W5nJNMfO2bWqwsz2PHjJq8f/3laj/tNNi8GapXLzSFQ99WuyHZ1OGHs34qHT/C0sn3UfnEUZcxM8/vwsAr+wJFZ0SXVstFPUexyM01dnnMm+diPli2Au37vMOhchU9vr5wCsmmtjlWWxYcvNnmRm5ZN8+lrGSZ/Fy6fDoFLIJxUdnQvq4fWWVNu7+GQ9zPrfiQO9wDMcDEiS6BuDivLwjhirv+DpWryLQLr6HvTx+7jOv163yaZP5NZs06nFO7EnW3lTc9184Dx4jdkcUAp5um2BmKnfUSGfD3AdP4Qta/4/IwteCP8aTAetfX2LT7MMdycikfH2f4UtXNl/x8IxPcgsltbigMxCBaLikSjG2CVcajg/3lq/B2y1SeWPaR64Hp02HAACNBystzORJEaicmWF5NF6fMnvOPTePMv+i1ZJZ5UOfOcMcdlq9T2tcXBDtjpb/3UrpzX/oXVMg57mJP3rMF9myBddbPVRfX+qWFbPBgd7DRd39Nr+HBFyv2VqjKexdd62ITLZcMWTO2Cd6uJj/tcCMnEqu6GvPz+ea6B0yJG0XdffojqcLxY6N0PmPnvUF8vttFRJky8OabhXuKnZGkDiHSsdLfgfJV+CD5qhB4E1hGX/kIx+PLFT4WLZccCcY2wdvVpK5chbJDze3Zrvx9OdU2/eqSOFFU9qRVUkXPi5KYMG+Lz+X1HD8296R/SUrGJvOAwYOhcWPLcyWpQ4h0POlv0sU38XfiGUH2JoBMmkTnwX1Ey35CErhsQlFrxmBkTW4f0dloz+ZeYg94of3tKKXQGsrFx3AyL588pyJY8bGKLs3OoFntyi7nbdx9iPkb/3Ep5u5prIMpi7fRev0SWuz5w3ywcWP49VejApHgFySBK7woSsuVjx/h/pVp9N34LWRlBd85fxAbCy++CH37htqTsEQSuGyO42qy/6x15FlcINVOTDCKCAwfDg8+aDr+1JIZ3l9kodnUrOCPL2MdmF/dicmTSdu4r/SZm4IQphSl5UPlKvLxtQ/Qd95bsHw5ZGbyxMw1RVafi1OKsmViOXYil6rly3D1+bVIqV/NNO7ZORvYf+ykyV6tfBlGdG8OQPpf+5n76x4OHDtJ1fJlaFa7Mr9s389Jpyv3MrEx3NyybuFrOJ9TuVICl/TqRpfu7Yr7sQhekGBsIxwitioEX7gOc8897Br0LHX2m9uWhZyHHiItsXGRda0FIRrwquWKFY3GKcDKnbU8dipz4G27UNqaDN5bn2h5TAEjbrvauGPfvJ7sBme5+NPz7iSWb850uXhOKfDf6pxPVh5mXN0M0bOfkTVjm+F1TTU+nn/6Dwqpj5Zccw28+mqx6+AKQqTia36EVVKjO0UleDqmxT3hWMP2pM0fN2d6rLUteg4ecmdsQ7zt8U0Z9AjbV62gwewPPY4JKp06wccfQ1yc7CMWBCe8adkxBozA5+kOuXZigsfCHUVti3SeVSuJNkXPwUOCcTiiFA0+mwFbR0J6OhuXrmXx2r/IzT+18hRTsKvIyUSMMtaDTuTmF7lGVS7OGKOAfIvjlcrGcVfb+qAU6eXP4EndhJ3P/UjtxAQSy8dbNhSXvYeC4BlH0PbUr7hT0xqm5Z8Bn6zj2S83WOrNgWOnRL+P1xKjlOd8FKyrdEldgOAhwTicOftsOPtsmvXqxe9uQjp2MrdIkXqiqJ7CcKpsHy4/HEbSSEZWNvExivhY5ZKdLXsPBcE3PPVLtrr7zcnXRWo8MSGez1ZlFJ5nFYgd2vRUta/nRUkuz+F8juBfJBhHCO7TYQ0Gzi32c3gKxLFKka+1KTPa0w9EYkI8FcrGSTa1IJQAq6ntfh+vLdZzJMTHohSW09dWem43foHH9eRx158nuyOCgATjCMXT9JIVysv4fK3ZPv5qk93TutHB7BzWjujis6+CIBRNcfScVBAwPQVwKz0XtTbsy7q3UHokmzpC8SVDEwzhOrIoPTX9Lm4/VFlPEgT/Uhw9OzKii6NP0XLokWAcoVj1MY6Pda0V7b72U9y60VJnWhCCQ6D1LFoOPTJNHcG4Ty9562nqKXnE0xRVcccLglByAqln0XLokdrUgmBzpDa1IEQOnvTs0zS1UqqbUmqLUmqrUmqgxXGllHq14PivSqkL/eG0EFzS1mTQbvwCn7s3CeGHaDk6EC2HH16nqZVSscAbwBXALmClUmqO1tq5ffWVQKOCP62BNwv+FsIET/sMQWpKRwqi5ehAtBye+HJn3ArYqrXeprU+CcwEeriN6QFM1wYrgESlVC0/+yoEEKlBGxWIlqMA0XJ44kswTgJ2Oj3eVWAr7hiUUr2VUulKqfTMzMzi+ioEEKlBGxX4TcsgerYrouXwxJdgrCxs7llfvoxBaz1Va52itU6pUaOGL/4JQUL2GUYFftMyiJ7timg5PPElGO8C6jo9rgO4N9P1ZYxgY2SfYVQgWo4CRMvhiS/BeCXQSCnVQClVBugFzHEbMwe4syATsw1wUGu9x8++CgHE196rQlgjWo4CRMvhiddsaq11rlLqUWAeEAu8q7XeoJTqU3B8MvA1cBWwFTgG3BM4l4VAITVoIxvRcvQgWg4/fKrApbX+GkOkzrbJTv/WwCP+dU0QBH8jWhYEeyK1qQVBEAQhxEgwFgRBEIQQI8FYEARBEEJMyBpFKKUygb+9DDsN2BcEdwJBuPoufgcXX/w+U2tt6428Ea5n8Tu4RLrflnoOWTD2BaVUut271XgiXH0Xv4NLuPpdEsL1vYrfwSVa/ZZpakEQBEEIMRKMBUEQBCHE2D0YTw21A6UgXH0Xv4NLuPpdEsL1vYrfwSUq/bb1mrEgCIIgRAN2vzMWBEEQhIjHVsFYKXWjUmqDUipfKeUxK00p1U0ptUUptVUpNTCYPnrwp5pS6jul1B8Ff1f1MO4vpdR6pdRapVR6sP108qPIz6+gScCrBcd/VUpdGAo/3fHB745KqYMFn+9apdTwUPjpjlLqXaXUXqXUbx6O2/LzLi2i5+Ageg4uAdOz1to2f4BzgCbAQiDFw5hY4E/gLKAMsA5oFmK/nwcGFvx7IPB/Hsb9BZwWYl+9fn4YjQK+weht2wb42QbfDV/87gh8FWpfLXzvAFwI/ObhuO0+bz+9b9Fz4H0VPQff94Do2VZ3xlrrTVrrLV6GtQK2aq23aa1PAjOBHoH3rkh6AO8X/Pt9IDV0rnjFl8+vBzBdG6wAEpVStYLtqBt2/H/3Ca31YmB/EUPs+HmXGtFzUBA9B5lA6dlWwdhHkoCdTo93FdhCyem6oOdrwd81PYzTwHyl1CqlVO+geeeKL5+fHT9jX326WCm1Tin1jVKqeXBcKzV2/LyDhR3fu+g58Iie3fCphaI/UUp9D5xhcWiI1voLX57CwhbwlPCi/C7G07TTWu9WStUEvlNKbS64ygomvnx+IfmMveCLT6sxSs0dUUpdBaQBjQLtmB+w4+ftE6Jn0XMJET27EfRgrLW+vJRPsQuo6/S4DrC7lM/plaL8Vkr9q5SqpbXeUzAdsdfDc+wu+HuvUupzjKmaYIvXl88vJJ+xF7z6pLU+5PTvr5VSk5RSp2mt7V7n1o6ft0+InkXPJUT07EY4TlOvBBoppRoopcoAvYA5IfZpDnBXwb/vAkx3BEqpCkqpSo5/A10Ay2y8AOPL5zcHuLMgK7ANcNAxbRdCvPqtlDpDKaUK/t0K4/v9X9A9LT52/LyDhei5dIie7UfJPu9QZ6a5ZaFdh3FVcQL4F5hXYK8NfO2WrfY7RjbeEBv4XR34Afij4O9q7n5jZA2uK/izIZR+W31+QB+gT8G/FfBGwfH1eMiEtaHfjxZ8tuuAFUDbUPtc4NdHwB4gp+D7fV84fN5+eN+i5+D4K3oOrt8B0bNU4BIEQRCEEBOO09SCIAiCEFFIMBYEQRCEECPBWBAEQRBCjARjQRAEQQgxEowFQRAEIcRIMBYEQRCEECPBWBAEQRBCjARjQRAEQQgx/w+OUVcWxRTexgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -167,22 +214,22 @@ "# restore entire net (may slow)\n", "restore_net()\n", "# restore only the net parameters\n", - "restore_params()" + "restore_params()\n", + "#restore all training info and train more\n", + "restore_all()" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -196,7 +243,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.9.7" } }, "nbformat": 4,