-
Notifications
You must be signed in to change notification settings - Fork 52
/
net.py
181 lines (142 loc) · 6.32 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn as nn
# -------------------------------------- sphere network Begin --------------------------------------
class Block(nn.Module):
def __init__(self, planes):
super(Block, self).__init__()
self.conv1 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.prelu1 = nn.PReLU(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.prelu2 = nn.PReLU(planes)
def forward(self, x):
return x + self.prelu2(self.conv2(self.prelu1(self.conv1(x))))
class sphere(nn.Module):
def __init__(self, type=20, is_gray=False):
super(sphere, self).__init__()
block = Block
if type is 20:
layers = [1, 2, 4, 1]
elif type is 64:
layers = [3, 7, 16, 3]
else:
raise ValueError('sphere' + str(type) + " IS NOT SUPPORTED! (sphere20 or sphere64)")
filter_list = [3, 64, 128, 256, 512]
if is_gray:
filter_list[0] = 1
self.layer1 = self._make_layer(block, filter_list[0], filter_list[1], layers[0], stride=2)
self.layer2 = self._make_layer(block, filter_list[1], filter_list[2], layers[1], stride=2)
self.layer3 = self._make_layer(block, filter_list[2], filter_list[3], layers[2], stride=2)
self.layer4 = self._make_layer(block, filter_list[3], filter_list[4], layers[3], stride=2)
self.fc = nn.Linear(512 * 7 * 6, 512)
# Weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
if m.bias is not None:
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0.0)
else:
nn.init.normal_(m.weight, 0, 0.01)
def _make_layer(self, block, inplanes, planes, blocks, stride):
layers = []
layers.append(nn.Conv2d(inplanes, planes, 3, stride, 1))
layers.append(nn.PReLU(planes))
for i in range(blocks):
layers.append(block(planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def save(self, file_path):
with open(file_path, 'wb') as f:
torch.save(self.state_dict(), f)
# -------------------------------------- sphere network END --------------------------------------
# ---------------------------------- LResNet50E-IR network Begin ----------------------------------
class BlockIR(nn.Module):
def __init__(self, inplanes, planes, stride, dim_match):
super(BlockIR, self).__init__()
self.bn1 = nn.BatchNorm2d(inplanes)
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.prelu1 = nn.PReLU(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes)
if dim_match:
self.downsample = None
else:
self.downsample = nn.Sequential(
nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes),
)
def forward(self, x):
residual = x
out = self.bn1(x)
out = self.conv1(out)
out = self.bn2(out)
out = self.prelu1(out)
out = self.conv2(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
return out
class LResNet(nn.Module):
def __init__(self, block, layers, filter_list, is_gray=False):
self.inplanes = 64
super(LResNet, self).__init__()
# input is (mini-batch,3 or 1,112,96)
# use (conv3x3, stride=1, padding=1) instead of (conv7x7, stride=2, padding=3)
if is_gray:
self.conv1 = nn.Conv2d(1, filter_list[0], kernel_size=3, stride=1, padding=1, bias=False) # gray
else:
self.conv1 = nn.Conv2d(3, filter_list[0], kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(filter_list[0])
self.prelu1 = nn.PReLU(filter_list[0])
self.layer1 = self._make_layer(block, filter_list[0], filter_list[1], layers[0], stride=2)
self.layer2 = self._make_layer(block, filter_list[1], filter_list[2], layers[1], stride=2)
self.layer3 = self._make_layer(block, filter_list[2], filter_list[3], layers[2], stride=2)
self.layer4 = self._make_layer(block, filter_list[3], filter_list[4], layers[3], stride=2)
self.fc = nn.Sequential(
nn.BatchNorm1d(filter_list[4] * 7 * 6),
nn.Dropout(p=0.4),
nn.Linear(filter_list[4] * 7 * 6, 512),
nn.BatchNorm1d(512), # fix gamma ???
)
# Weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,0)
def _make_layer(self, block, inplanes, planes, blocks, stride):
layers = []
layers.append(block(inplanes, planes, stride, False))
for i in range(1, blocks):
layers.append(block(planes, planes, stride=1, dim_match=True))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def save(self, file_path):
with open(file_path, 'wb') as f:
torch.save(self.state_dict(), f)
def LResNet50E_IR(is_gray=False):
filter_list = [64, 64, 128, 256, 512]
layers = [3, 4, 14, 3]
return LResNet(BlockIR, layers, filter_list, is_gray)
# ---------------------------------- LResNet50E-IR network End ----------------------------------