Skip to content

Commit 58a4ce2

Browse files
authoredAug 2, 2024
Add files via upload
1 parent 610fe55 commit 58a4ce2

File tree

1 file changed

+180
-0
lines changed

1 file changed

+180
-0
lines changed
 

‎qoppav4.py

+180
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,180 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
Created on Wed Jul 31 17:15:19 2024
4+
5+
@author: ektop
6+
"""
7+
8+
import networkx as nx
9+
import numpy as np
10+
from random import uniform
11+
from math import pi
12+
import matplotlib.pyplot as plt
13+
from mpl_toolkits.mplot3d import Axes3D
14+
15+
alpha = 1 # coupling strength
16+
Dt = 0.01 # Delta t
17+
m = 1 # Assume mass as 1 for simplicity
18+
19+
def initialize():
20+
global g, nextg
21+
g = nx.karate_club_graph()
22+
for i in list(g.nodes()):
23+
g.node[i]['theta'] = 2 * pi * np.random.random()
24+
g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
25+
nextg = g.copy()
26+
27+
def observe():
28+
global g
29+
plt.clf()
30+
nx.draw(g, cmap=plt.cm.hsv, vmin=-1, vmax=1,
31+
node_color=[np.sin(g.node[i]['theta']) for i in list(g.nodes())],
32+
pos=nx.spring_layout(g))
33+
plt.title('Network Visualization')
34+
plt.show()
35+
36+
def gauss_mouse_map(phase):
37+
return np.sin(phase)
38+
39+
def update():
40+
global g, nextg, chaotic_numbers_data, timestamps, frequency_shifts, action_derivative_values
41+
chaotic_numbers = []
42+
angular_accelerations = np.zeros(len(g.nodes()))
43+
action_derivative = 0 # Initialize action derivative for this timestep
44+
previous_angular_velocities = np.array([g.node[i]['omega'] for i in g.nodes()])
45+
46+
for i in list(g.nodes()):
47+
theta_i = g.node[i]['theta']
48+
omega_i = g.node[i]['omega']
49+
50+
# Update angular position using Euler's method
51+
nextg.node[i]['theta'] = theta_i + omega_i * Dt + (alpha * (
52+
np.sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i))
53+
/ g.degree(i))) * Dt
54+
55+
angular_accelerations[i] = (nextg.node[i]['theta'] - theta_i) / Dt
56+
57+
chaotic_number = gauss_mouse_map(g.node[i]['theta'])
58+
chaotic_numbers.append(chaotic_number)
59+
60+
# Compute derivative of action
61+
for i in range(len(g.nodes())):
62+
action_derivative += 0.5 * m * previous_angular_velocities[i] * angular_accelerations[i]
63+
64+
action_derivative_values.append(action_derivative) # Store action derivative over time
65+
# Calculate frequency shifts
66+
if len(chaotic_numbers_data) > 0:
67+
previous_chaotic_numbers = chaotic_numbers_data[-1]
68+
frequency_shift = [chaotic_numbers[j] - previous_chaotic_numbers[j] for j in range(len(chaotic_numbers))]
69+
frequency_shifts.append(np.mean(frequency_shift)) # Store the average frequency shift over time
70+
else:
71+
frequency_shifts.append(0) # No shift initially
72+
73+
74+
# Update the states
75+
g, nextg = nextg, g
76+
chaotic_numbers_data.append(chaotic_numbers)
77+
timestamps.append(len(chaotic_numbers_data))
78+
79+
def initialize_and_update():
80+
initialize()
81+
update()
82+
83+
import pycxsimulator
84+
85+
# Initialize lists to store data
86+
chaotic_numbers_data = []
87+
frequency_shifts = []
88+
action_derivative_values = [] # List to store action derivatives over time
89+
timestamps = [] # Initialize timestamps
90+
91+
# Run the simulation
92+
pycxsimulator.GUI().start(func=[initialize, observe, update])
93+
94+
95+
# Create scatter plot of chaotic number values vs timestamps
96+
plt.figure(figsize=(12, 5))
97+
for i, chaotic_numbers in enumerate(chaotic_numbers_data):
98+
colors = ['r' if num >= 0 else 'b' for num in chaotic_numbers]
99+
plt.scatter([timestamps[i]] * len(chaotic_numbers), chaotic_numbers, color=colors, alpha=0.5)
100+
101+
plt.xlabel('Timestamp')
102+
plt.ylabel('Chaotic Number Value')
103+
plt.title('Scatter Plot of Chaotic Number Values vs Timestamp')
104+
plt.show()
105+
106+
107+
# Create scatter plot of frequency shifts
108+
plt.figure(figsize=(12, 5))
109+
for i, shift in enumerate(frequency_shifts):
110+
plt.scatter(timestamps[i], shift, color='g', alpha=0.5)
111+
112+
plt.xlabel('Timestamp')
113+
plt.ylabel('Average Frequency Shift')
114+
plt.title('Scatter Plot of Frequency Shifts vs Timestamp')
115+
plt.show()
116+
117+
118+
# New: Plot action derivatives over time
119+
plt.figure(figsize=(12, 5))
120+
plt.plot(timestamps, action_derivative_values, marker='o', linestyle='-')
121+
plt.title('Action Derivative over Time')
122+
plt.xlabel('Timestamp')
123+
plt.ylabel('Action Derivative')
124+
plt.grid()
125+
plt.show()
126+
127+
# New: Create scatter plot of action derivative vs chaotic numbers
128+
plt.figure(figsize=(12, 5))
129+
for i, chaotic_numbers in enumerate(chaotic_numbers_data):
130+
for j in range(len(chaotic_numbers)):
131+
plt.scatter(action_derivative_values[i], chaotic_numbers[j], color='red', alpha=0.5)
132+
133+
plt.title('Chaotic Numbers vs Action Derivative')
134+
plt.xlabel('Action Derivative')
135+
plt.ylabel('Chaotic Number Value')
136+
plt.grid()
137+
plt.show()
138+
139+
140+
# New: Plot frequency shifts vs actions
141+
plt.figure(figsize=(12, 5))
142+
plt.scatter(action_derivative_values, frequency_shifts, color='orange', alpha=0.5)
143+
plt.title('Frequency Shifts vs Action Derivative')
144+
plt.xlabel('Action Derivative')
145+
plt.ylabel('Average Frequency Shift')
146+
plt.grid()
147+
plt.show()
148+
149+
150+
151+
152+
153+
# Assuming you have the following variables defined
154+
# timestamps, action_derivative_values, frequency_shifts
155+
156+
# Create a figure
157+
fig = plt.figure(figsize=(12, 8))
158+
159+
# Create a 3D scatter plot
160+
ax = fig.add_subplot(111, projection='3d')
161+
162+
# Create a scatter plot, using timestamps, action derivatives, and chaotic numbers
163+
scatter = ax.scatter(timestamps, action_derivative_values, frequency_shifts,
164+
c=action_derivative_values, cmap='viridis', alpha=0.5)
165+
166+
# Add titles and labels
167+
ax.set_title('3D Visualization of Action Derivative, Frequency Shift, va Timestamps')
168+
ax.set_xlabel('Timestamp')
169+
ax.set_ylabel('Action Derivative')
170+
ax.set_zlabel('Frequency Shift Value')
171+
172+
# Show color bar for reference
173+
plt.colorbar(scatter, label='Action Derivative')
174+
175+
# Show the plot
176+
plt.show()
177+
178+
179+
180+

0 commit comments

Comments
 (0)
Please sign in to comment.