|
| 1 | +# |
| 2 | +# Configuration file for n3fit |
| 3 | +# |
| 4 | +###################################################################################### |
| 5 | +description: Starting runcard for the NNPDF4.1 series of fits. Work In Progress |
| 6 | + |
| 7 | +###################################################################################### |
| 8 | +dataset_inputs: |
| 9 | +- {dataset: NMC_NC_NOTFIXED_EM-F2, frac: 0.75, variant: legacy_dw} |
| 10 | +- {dataset: NMC_NC_NOTFIXED_P_EM-SIGMARED, frac: 0.75, variant: legacy} |
| 11 | +- {dataset: SLAC_NC_NOTFIXED_P_EM-F2, frac: 0.75, variant: legacy_dw} |
| 12 | +- {dataset: SLAC_NC_NOTFIXED_D_EM-F2, frac: 0.75, variant: legacy_dw} |
| 13 | +- {dataset: BCDMS_NC_NOTFIXED_P_EM-F2, frac: 0.75, variant: legacy_dw} |
| 14 | +- {dataset: BCDMS_NC_NOTFIXED_D_EM-F2, frac: 0.75, variant: legacy_dw} |
| 15 | +- {dataset: CHORUS_CC_NOTFIXED_PB_NU-SIGMARED, frac: 0.75, variant: legacy_dw} |
| 16 | +- {dataset: CHORUS_CC_NOTFIXED_PB_NB-SIGMARED, frac: 0.75, variant: legacy_dw} |
| 17 | +- {dataset: NUTEV_CC_NOTFIXED_FE_NU-SIGMARED, cfac: [MAS], frac: 0.75, variant: legacy_dw} |
| 18 | +- {dataset: NUTEV_CC_NOTFIXED_FE_NB-SIGMARED, cfac: [MAS], frac: 0.75, variant: legacy_dw} |
| 19 | +- {dataset: HERA_NC_318GEV_EM-SIGMARED, frac: 0.75} |
| 20 | +- {dataset: HERA_NC_225GEV_EP-SIGMARED, frac: 0.75} |
| 21 | +- {dataset: HERA_NC_251GEV_EP-SIGMARED, frac: 0.75} |
| 22 | +- {dataset: HERA_NC_300GEV_EP-SIGMARED, frac: 0.75} |
| 23 | +- {dataset: HERA_NC_318GEV_EP-SIGMARED, frac: 0.75} |
| 24 | +- {dataset: HERA_CC_318GEV_EM-SIGMARED, frac: 0.75} |
| 25 | +- {dataset: HERA_CC_318GEV_EP-SIGMARED, frac: 0.75} |
| 26 | +- {dataset: HERA_NC_318GEV_EAVG_CHARM-SIGMARED, frac: 0.75} |
| 27 | +- {dataset: HERA_NC_318GEV_EAVG_BOTTOM-SIGMARED, frac: 0.75} |
| 28 | +- {dataset: DYE866_Z0_800GEV_DW_RATIO_PDXSECRATIO, frac: 0.75} |
| 29 | +- {dataset: DYE866_Z0_800GEV_PXSEC, frac: 0.75} |
| 30 | +- {dataset: DYE605_Z0_38P8GEV_DW_PXSEC, frac: 0.75} |
| 31 | +# - {dataset: DYE906_Z0_120GEV_DW_PDXSECRATIO, frac: 0.75} |
| 32 | +- {dataset: CDF_Z0_1P96TEV_ZRAP, frac: 0.75} |
| 33 | +- {dataset: D0_Z0_1P96TEV_ZRAP, frac: 0.75} |
| 34 | +- {dataset: D0_WPWM_1P96TEV_ASY, frac: 0.75} |
| 35 | +- {dataset: ATLAS_WPWM_7TEV_36PB_ETA, frac: 0.75} |
| 36 | +- {dataset: ATLAS_Z0_7TEV_36PB_ETA, frac: 0.75} |
| 37 | +- {dataset: ATLAS_Z0_7TEV_49FB_HIMASS, frac: 0.75} |
| 38 | +- {dataset: ATLAS_Z0_7TEV_LOMASS_M, frac: 0.75} |
| 39 | +- {dataset: ATLAS_WPWM_7TEV_46FB_CC-ETA, frac: 0.75} |
| 40 | +- {dataset: ATLAS_Z0_7TEV_46FB_CC-Y, frac: 0.75} |
| 41 | +- {dataset: ATLAS_Z0_7TEV_46FB_CF-Y, frac: 0.75} |
| 42 | +- {dataset: ATLAS_Z0_8TEV_HIMASS_M-Y, frac: 0.75} |
| 43 | +# - {dataset: ATLAS_Z0_8TEV_LOWMASS_M-Y, frac: 0.75, variant: legacy} |
| 44 | +- {dataset: ATLAS_Z0_13TEV_TOT, frac: 0.75, cfac: [NRM]} |
| 45 | +- {dataset: ATLAS_WPWM_13TEV_TOT, frac: 0.75, cfac: [NRM]} |
| 46 | +- {dataset: ATLAS_WJ_8TEV_WP-PT, frac: 0.75} |
| 47 | +- {dataset: ATLAS_WJ_8TEV_WM-PT, frac: 0.75} |
| 48 | +- {dataset: ATLAS_Z0J_8TEV_PT-M, frac: 0.75} |
| 49 | +- {dataset: ATLAS_Z0J_8TEV_PT-Y, frac: 0.75} |
| 50 | +- {dataset: ATLAS_TTBAR_7TEV_TOT_X-SEC, frac: 0.75} |
| 51 | +- {dataset: ATLAS_TTBAR_8TEV_TOT_X-SEC, frac: 0.75} |
| 52 | +- {dataset: ATLAS_TTBAR_13TEV_TOT_X-SEC, frac: 0.75} |
| 53 | +- {dataset: ATLAS_TTBAR_8TEV_LJ_DIF_YT-NORM, frac: 0.75} |
| 54 | +- {dataset: ATLAS_TTBAR_8TEV_LJ_DIF_YTTBAR-NORM, frac: 0.75} |
| 55 | +- {dataset: ATLAS_TTBAR_8TEV_2L_DIF_YTTBAR-NORM, frac: 0.75} |
| 56 | +- {dataset: ATLAS_1JET_8TEV_R06_PTY, frac: 0.75, variant: legacy_data} |
| 57 | +- {dataset: ATLAS_2JET_7TEV_R06_M12Y, frac: 0.75} |
| 58 | +- {dataset: ATLAS_PH_13TEV_XSEC, frac: 0.75, cfac: [EWK]} |
| 59 | +- {dataset: ATLAS_SINGLETOP_7TEV_TCHANNEL-XSEC, frac: 0.75} |
| 60 | +- {dataset: ATLAS_SINGLETOP_13TEV_TCHANNEL-XSEC, frac: 0.75} |
| 61 | +- {dataset: ATLAS_SINGLETOP_7TEV_T-Y-NORM, frac: 0.75} |
| 62 | +- {dataset: ATLAS_SINGLETOP_7TEV_TBAR-Y-NORM, frac: 0.75} |
| 63 | +- {dataset: ATLAS_SINGLETOP_8TEV_T-RAP-NORM, frac: 0.75} |
| 64 | +- {dataset: ATLAS_SINGLETOP_8TEV_TBAR-RAP-NORM, frac: 0.75} |
| 65 | +- {dataset: CMS_WPWM_7TEV_ELECTRON_ASY, frac: 0.75} |
| 66 | +- {dataset: CMS_WPWM_7TEV_MUON_ASY, frac: 0.75} |
| 67 | +- {dataset: CMS_Z0_7TEV_DIMUON_2D, frac: 0.75} |
| 68 | +- {dataset: CMS_WPWM_8TEV_MUON_Y, frac: 0.75} |
| 69 | +- {dataset: CMS_Z0J_8TEV_PT-Y, frac: 0.75, cfac: [NRM]} |
| 70 | +- {dataset: CMS_2JET_7TEV_M12-Y, frac: 0.75} |
| 71 | +- {dataset: CMS_1JET_8TEV_PTY, frac: 0.75, variant: legacy_data} |
| 72 | +- {dataset: CMS_TTBAR_7TEV_TOT_X-SEC, frac: 0.75} |
| 73 | +- {dataset: CMS_TTBAR_8TEV_TOT_X-SEC, frac: 0.75} |
| 74 | +- {dataset: CMS_TTBAR_13TEV_TOT_X-SEC, frac: 0.75} |
| 75 | +- {dataset: CMS_TTBAR_8TEV_LJ_DIF_YTTBAR-NORM, frac: 0.75} |
| 76 | +- {dataset: CMS_TTBAR_5TEV_TOT_X-SEC, frac: 0.75} |
| 77 | +- {dataset: CMS_TTBAR_8TEV_2L_DIF_MTTBAR-YT-NORM, frac: 0.75} |
| 78 | +- {dataset: CMS_TTBAR_13TEV_2L_DIF_YT, frac: 0.75} |
| 79 | +- {dataset: CMS_TTBAR_13TEV_LJ_DIF_YT, frac: 0.75} |
| 80 | +- {dataset: CMS_SINGLETOP_7TEV_TCHANNEL-XSEC, frac: 0.75} |
| 81 | +- {dataset: CMS_SINGLETOP_8TEV_TCHANNEL-XSEC, frac: 0.75} |
| 82 | +- {dataset: CMS_SINGLETOP_13TEV_TCHANNEL-XSEC, frac: 0.75} |
| 83 | +- {dataset: LHCB_Z0_7TEV_DIELECTRON_Y, frac: 0.75} |
| 84 | +- {dataset: LHCB_Z0_8TEV_DIELECTRON_Y, frac: 0.75} |
| 85 | +- {dataset: LHCB_WPWM_7TEV_MUON_Y, frac: 0.75, cfac: [NRM]} |
| 86 | +- {dataset: LHCB_Z0_7TEV_MUON_Y, frac: 0.75, cfac: [NRM]} |
| 87 | +- {dataset: LHCB_WPWM_8TEV_MUON_Y, frac: 0.75, cfac: [NRM]} |
| 88 | +- {dataset: LHCB_Z0_8TEV_MUON_Y, frac: 0.75, cfac: [NRM]} |
| 89 | +- {dataset: LHCB_Z0_13TEV_DIMUON-Y, frac: 0.75} |
| 90 | +- {dataset: LHCB_Z0_13TEV_DIELECTRON-Y, frac: 0.75} |
| 91 | + |
| 92 | + |
| 93 | +################################################################################ |
| 94 | +datacuts: |
| 95 | + t0pdfset: 250917-jcm-001 |
| 96 | + q2min: 3.49 |
| 97 | + w2min: 12.5 |
| 98 | +theory: |
| 99 | + theoryid: 41_000_000 |
| 100 | + |
| 101 | +trvlseed: 1953065998 |
| 102 | +nnseed: 1589400026 |
| 103 | +mcseed: 2135943670 |
| 104 | +genrep: true |
| 105 | +parameters: # This defines the parameter dictionary that is passed to the Model Trainer |
| 106 | + nodes_per_layer: [70, 50, 25, 20, 9] |
| 107 | + activation_per_layer: [tanh, tanh, tanh, tanh, linear] |
| 108 | + initializer: glorot_normal |
| 109 | + optimizer: |
| 110 | + clipnorm: 6.073e-6 |
| 111 | + learning_rate: 2.621e-3 |
| 112 | + optimizer_name: Nadam |
| 113 | + epochs: 27000 |
| 114 | + positivity: |
| 115 | + initial: 184.8 |
| 116 | + multiplier: |
| 117 | + integrability: |
| 118 | + initial: 10 |
| 119 | + multiplier: |
| 120 | + stopping_patience: 0.1 |
| 121 | + layer_type: dense |
| 122 | + dropout: 0.0 |
| 123 | + threshold_chi2: 3.5 |
| 124 | + interpolation_points: 5 |
| 125 | +fitting: |
| 126 | + fitbasis: CCBAR_ASYMM # EVOL (7), EVOLQED (8), etc. |
| 127 | + savepseudodata: true |
| 128 | + basis: |
| 129 | + - {fl: sng, trainable: false, smallx: [1.103, 1.12], largex: [1.461, 3.778]} |
| 130 | + - {fl: g, trainable: false, smallx: [0.8737, 1.088], largex: [2.204, 4.431]} |
| 131 | + - {fl: v, trainable: false, smallx: [0.5051, 0.6847], largex: [1.526, 2.557]} |
| 132 | + - {fl: v3, trainable: false, smallx: [0.1932, 0.4309], largex: [1.73, 2.559]} |
| 133 | + - {fl: v8, trainable: false, smallx: [0.5645, 0.7228], largex: [1.566, 2.662]} |
| 134 | + - {fl: t3, trainable: false, smallx: [-0.4244, 1.0], largex: [1.75, 2.939]} |
| 135 | + - {fl: t8, trainable: false, smallx: [0.6677, 0.9282], largex: [1.55, 3.504]} |
| 136 | + - {fl: t15, trainable: false, smallx: [1.087, 1.136], largex: [1.503, 3.379]} |
| 137 | + - {fl: v15, trainable: false, smallx: [0.4713, 0.7641], largex: [1.464, 3.851]} |
| 138 | + |
| 139 | +################################################################################ |
| 140 | +positivity: |
| 141 | + posdatasets: |
| 142 | + # Positivity Lagrange Multiplier |
| 143 | + - {dataset: NNPDF_POS_2P24GEV_F2U, maxlambda: 1e6} |
| 144 | + - {dataset: NNPDF_POS_2P24GEV_F2D, maxlambda: 1e6} |
| 145 | + - {dataset: NNPDF_POS_2P24GEV_F2S, maxlambda: 1e6} |
| 146 | + - {dataset: NNPDF_POS_2P24GEV_FLL, maxlambda: 1e6} |
| 147 | + - {dataset: NNPDF_POS_2P24GEV_DYU, maxlambda: 1e10} |
| 148 | + - {dataset: NNPDF_POS_2P24GEV_DYD, maxlambda: 1e10} |
| 149 | + - {dataset: NNPDF_POS_2P24GEV_DYS, maxlambda: 1e10} |
| 150 | + - {dataset: NNPDF_POS_2P24GEV_F2C-CCE, maxlambda: 1e6} |
| 151 | + - {dataset: NNPDF_POS_2P24GEV_F2C-CCP, maxlambda: 1e6} |
| 152 | + # Positivity of MSbar PDFs |
| 153 | + - {dataset: NNPDF_POS_2P24GEV_XUQ, maxlambda: 1e6} |
| 154 | + - {dataset: NNPDF_POS_2P24GEV_XUB, maxlambda: 1e6} |
| 155 | + - {dataset: NNPDF_POS_2P24GEV_XDQ, maxlambda: 1e6} |
| 156 | + - {dataset: NNPDF_POS_2P24GEV_XDB, maxlambda: 1e6} |
| 157 | + - {dataset: NNPDF_POS_2P24GEV_XSQ, maxlambda: 1e6} |
| 158 | + - {dataset: NNPDF_POS_2P24GEV_XSB, maxlambda: 1e6} |
| 159 | + - {dataset: NNPDF_POS_2P24GEV_XGL, maxlambda: 1e6} |
| 160 | + |
| 161 | +added_filter_rules: |
| 162 | +- dataset: NNPDF_POS_2P24GEV_FLL |
| 163 | + rule: x > 5.0e-7 |
| 164 | +- dataset: NNPDF_POS_2P24GEV_F2C-CCE |
| 165 | + rule: x < 0.74 |
| 166 | +- dataset: NNPDF_POS_2P24GEV_F2C-CCP |
| 167 | + rule: x < 0.74 |
| 168 | +- dataset: NNPDF_POS_2P24GEV_XGL |
| 169 | + rule: x > 0.1 |
| 170 | +- dataset: NNPDF_POS_2P24GEV_XUQ |
| 171 | + rule: x > 0.1 |
| 172 | +- dataset: NNPDF_POS_2P24GEV_XUB |
| 173 | + rule: x > 0.1 |
| 174 | +- dataset: NNPDF_POS_2P24GEV_XDQ |
| 175 | + rule: x > 0.1 |
| 176 | +- dataset: NNPDF_POS_2P24GEV_XDB |
| 177 | + rule: x > 0.1 |
| 178 | +- dataset: NNPDF_POS_2P24GEV_XSQ |
| 179 | + rule: x > 0.1 |
| 180 | +- dataset: NNPDF_POS_2P24GEV_XSB |
| 181 | + rule: x > 0.1 |
| 182 | + |
| 183 | +integrability: |
| 184 | + integdatasets: |
| 185 | + - {dataset: NNPDF_INTEG_3GEV_XT8, maxlambda: 1e2} |
| 186 | + - {dataset: NNPDF_INTEG_3GEV_XT3, maxlambda: 1e2} |
| 187 | + |
| 188 | +################################################################################ |
| 189 | +debug: false |
| 190 | +maxcores: 16 |
0 commit comments