|
| 1 | +"""Implementation of arrow storage for time series.""" |
| 2 | + |
| 3 | +import atexit |
| 4 | +from contextlib import contextmanager |
| 5 | +from datetime import datetime, timedelta |
| 6 | +from functools import singledispatch |
| 7 | +from pathlib import Path |
| 8 | +from tempfile import NamedTemporaryFile |
| 9 | +from typing import Any, Generator, Self |
| 10 | +from uuid import UUID |
| 11 | + |
| 12 | +import pandas as pd |
| 13 | +import pint |
| 14 | +from chronify import DatetimeRange, Store, TableSchema |
| 15 | +from loguru import logger |
| 16 | +from sqlalchemy import Connection |
| 17 | + |
| 18 | +from infrasys.exceptions import ISFileExists, ISInvalidParameter |
| 19 | +from infrasys.id_manager import IDManager |
| 20 | +from infrasys.time_series_models import ( |
| 21 | + SingleTimeSeries, |
| 22 | + SingleTimeSeriesKey, |
| 23 | + SingleTimeSeriesMetadata, |
| 24 | + TimeSeriesData, |
| 25 | + TimeSeriesKey, |
| 26 | + TimeSeriesMetadata, |
| 27 | + TimeSeriesStorageType, |
| 28 | +) |
| 29 | +from infrasys.time_series_storage_base import TimeSeriesStorageBase |
| 30 | +from infrasys.utils.path_utils import delete_if_exists |
| 31 | + |
| 32 | + |
| 33 | +_SINGLE_TIME_SERIES_BASE_NAME = "single_time_series" |
| 34 | +_TIME_SERIES_FILENAME = "time_series_data.db" |
| 35 | + |
| 36 | + |
| 37 | +class ChronifyTimeSeriesStorage(TimeSeriesStorageBase): |
| 38 | + """Stores time series in a chronfiy database.""" |
| 39 | + |
| 40 | + def __init__( |
| 41 | + self, |
| 42 | + store: Store, |
| 43 | + id_manager: IDManager, |
| 44 | + read_only: bool = False, |
| 45 | + uuid_lookup: dict[UUID, int] | None = None, |
| 46 | + ) -> None: |
| 47 | + self._store = store |
| 48 | + self._read_only = read_only |
| 49 | + # infrasys currently uses UUIDs as unique identifies for components and time series. |
| 50 | + # Those will eventually use integer IDs instead. |
| 51 | + # We don't want to store UUIDs in the chronify database. |
| 52 | + # Integer IDs are much smaller and faster for search. |
| 53 | + # Manage a mapping of UUIDs to integer IDs until we can remove UUIDs (#80). |
| 54 | + self._uuid_lookup: dict[UUID, int] = uuid_lookup or {} |
| 55 | + self._id_manager = id_manager |
| 56 | + |
| 57 | + @classmethod |
| 58 | + def create_with_temp_directory( |
| 59 | + cls, |
| 60 | + base_directory: Path | None = None, |
| 61 | + engine_name: str = "duckdb", |
| 62 | + read_only: bool = False, |
| 63 | + ) -> Self: |
| 64 | + """Construct ChronifyTimeSeriesStorage with a temporary directory.""" |
| 65 | + with NamedTemporaryFile(dir=base_directory, suffix=".db") as f: |
| 66 | + dst_file = Path(f.name) |
| 67 | + logger.debug("Creating database at {}", dst_file) |
| 68 | + atexit.register(delete_if_exists, dst_file) |
| 69 | + store = Store(engine_name=engine_name, file_path=dst_file) |
| 70 | + id_manager = IDManager(next_id=1) |
| 71 | + return cls(store, id_manager, read_only=read_only) |
| 72 | + |
| 73 | + @classmethod |
| 74 | + def create_with_permanent_directory( |
| 75 | + cls, |
| 76 | + base_directory: Path, |
| 77 | + engine_name: str = "duckdb", |
| 78 | + read_only: bool = False, |
| 79 | + ) -> Self: |
| 80 | + """Construct ChronifyTimeSeriesStorage with a permanent directory.""" |
| 81 | + dst_file = base_directory / _TIME_SERIES_FILENAME |
| 82 | + if dst_file.exists(): |
| 83 | + msg = f"time series database already exists: {dst_file}" |
| 84 | + raise ISFileExists(msg) |
| 85 | + logger.debug("Creating database at {}", dst_file) |
| 86 | + store = Store(engine_name=engine_name, file_path=dst_file) |
| 87 | + id_manager = IDManager(next_id=1) |
| 88 | + return cls(store, id_manager, read_only=read_only) |
| 89 | + |
| 90 | + @classmethod |
| 91 | + def from_file_to_tmp_file( |
| 92 | + cls, |
| 93 | + data: dict[str, Any], |
| 94 | + dst_dir: Path | None = None, |
| 95 | + read_only: bool = False, |
| 96 | + ) -> Self: |
| 97 | + """Construct ChronifyTimeSeriesStorage after copying from an existing database file.""" |
| 98 | + id_manager, uuid_lookup = cls._deserialize_ids(data) |
| 99 | + with NamedTemporaryFile(dir=dst_dir, suffix=".db") as f: |
| 100 | + dst_file = Path(f.name) |
| 101 | + orig_store = Store(engine_name=data["engine_name"], file_path=data["filename"]) |
| 102 | + orig_store.backup(dst_file) |
| 103 | + new_store = Store(engine_name=data["engine_name"], file_path=dst_file) |
| 104 | + atexit.register(delete_if_exists, dst_file) |
| 105 | + return cls(new_store, id_manager, read_only=read_only, uuid_lookup=uuid_lookup) |
| 106 | + |
| 107 | + @classmethod |
| 108 | + def from_file(cls, data: dict[str, Any], read_only: bool = False) -> Self: |
| 109 | + """Construct ChronifyTimeSeriesStorage with an existing database file.""" |
| 110 | + id_manager, uuid_lookup = cls._deserialize_ids(data) |
| 111 | + store = Store(engine_name=data["engine_name"], file_path=Path(data["filename"])) |
| 112 | + return cls(store, id_manager, read_only=read_only, uuid_lookup=uuid_lookup) |
| 113 | + |
| 114 | + @staticmethod |
| 115 | + def _deserialize_ids(data: dict[str, Any]) -> tuple[IDManager, dict[UUID, int]]: |
| 116 | + uuid_lookup: dict[UUID, int] = {} |
| 117 | + max_id = 0 |
| 118 | + for key, val in data["uuid_lookup"].items(): |
| 119 | + uuid_lookup[UUID(key)] = val |
| 120 | + if val > max_id: |
| 121 | + max_id = val |
| 122 | + id_manager = IDManager(next_id=max_id + 1) |
| 123 | + return id_manager, uuid_lookup |
| 124 | + |
| 125 | + def get_database_url(self) -> str: |
| 126 | + """Return the path to the underlying database.""" |
| 127 | + assert self._store.engine.url.database is not None |
| 128 | + # We don't expect to use an in-memory db. |
| 129 | + return self._store.engine.url.database |
| 130 | + |
| 131 | + def get_time_series_directory(self) -> Path: |
| 132 | + assert self._store.engine.url.database is not None |
| 133 | + return Path(self._store.engine.url.database).parent |
| 134 | + |
| 135 | + def add_time_series( |
| 136 | + self, |
| 137 | + metadata: TimeSeriesMetadata, |
| 138 | + time_series: TimeSeriesData, |
| 139 | + connection: Connection | None = None, |
| 140 | + ) -> None: |
| 141 | + if not isinstance(time_series, SingleTimeSeries): |
| 142 | + msg = f"Bug: need to implement add_time_series for {type(time_series)}" |
| 143 | + raise NotImplementedError(msg) |
| 144 | + |
| 145 | + if time_series.uuid in self._uuid_lookup: |
| 146 | + msg = f"Bug: time series {time_series.uuid} already stored" |
| 147 | + raise Exception(msg) |
| 148 | + |
| 149 | + db_id = self._id_manager.get_next_id() |
| 150 | + df = self._to_dataframe(time_series, db_id) |
| 151 | + schema = _make_table_schema(time_series, _get_table_name(time_series)) |
| 152 | + # There is no reason to run time checks because we are generating the timestamps |
| 153 | + # from initial_time, resolution, and length, so they are guaranteed to be correct. |
| 154 | + self._store.ingest_table(df, schema, connection=connection, skip_time_checks=False) |
| 155 | + self._uuid_lookup[time_series.uuid] = db_id |
| 156 | + logger.debug("Added {} to time series storage", time_series.summary) |
| 157 | + |
| 158 | + def check_timestamps(self, key: TimeSeriesKey, connection: Connection | None = None) -> None: |
| 159 | + table_name = _get_table_name(key) |
| 160 | + self._store.check_timestamps(table_name, connection=connection) |
| 161 | + |
| 162 | + def get_engine_name(self) -> str: |
| 163 | + """Return the name of the underlying database engine.""" |
| 164 | + return self._store.engine.name |
| 165 | + |
| 166 | + def get_time_series( |
| 167 | + self, |
| 168 | + metadata: TimeSeriesMetadata, |
| 169 | + start_time: datetime | None = None, |
| 170 | + length: int | None = None, |
| 171 | + connection: Connection | None = None, |
| 172 | + ) -> Any: |
| 173 | + if isinstance(metadata, SingleTimeSeriesMetadata): |
| 174 | + return self._get_single_time_series( |
| 175 | + metadata=metadata, |
| 176 | + start_time=start_time, |
| 177 | + length=length, |
| 178 | + connection=connection, |
| 179 | + ) |
| 180 | + |
| 181 | + msg = f"Bug: need to implement get_time_series for {type(metadata)}" |
| 182 | + raise NotImplementedError(msg) |
| 183 | + |
| 184 | + def remove_time_series( |
| 185 | + self, metadata: TimeSeriesMetadata, connection: Connection | None = None |
| 186 | + ) -> None: |
| 187 | + db_id = self._get_db_id(metadata.time_series_uuid) |
| 188 | + table_name = _get_table_name(metadata) |
| 189 | + num_deleted = self._store.delete_rows(table_name, {"id": db_id}, connection=connection) |
| 190 | + if num_deleted < 1: |
| 191 | + msg = f"Failed to delete rows in the chronfiy database for {metadata.time_series_uuid}" |
| 192 | + raise ISInvalidParameter(msg) |
| 193 | + |
| 194 | + def serialize( |
| 195 | + self, data: dict[str, Any], dst: Path | str, src: Path | str | None = None |
| 196 | + ) -> None: |
| 197 | + ts_dir = dst if isinstance(dst, Path) else Path(dst) |
| 198 | + path = ts_dir / "time_series_data.db" |
| 199 | + assert not path.exists(), path |
| 200 | + self._store.backup(path) |
| 201 | + data["filename"] = str(path) |
| 202 | + data["time_series_storage_type"] = TimeSeriesStorageType.CHRONIFY.value |
| 203 | + data["engine_name"] = self._store.engine.name |
| 204 | + data["uuid_lookup"] = {str(k): v for k, v in self._uuid_lookup.items()} |
| 205 | + |
| 206 | + def _get_single_time_series( |
| 207 | + self, |
| 208 | + metadata: SingleTimeSeriesMetadata, |
| 209 | + start_time: datetime | None = None, |
| 210 | + length: int | None = None, |
| 211 | + connection: Connection | None = None, |
| 212 | + ) -> SingleTimeSeries: |
| 213 | + table_name = _get_table_name(metadata) |
| 214 | + db_id = self._get_db_id(metadata.time_series_uuid) |
| 215 | + _, required_len = metadata.get_range(start_time=start_time, length=length) |
| 216 | + where_clauses = ["id = ?"] |
| 217 | + params: list[Any] = [db_id] |
| 218 | + if start_time is not None: |
| 219 | + where_clauses.append("timestamp >= ?") |
| 220 | + params.append(start_time) |
| 221 | + where_clause = " AND ".join(where_clauses) |
| 222 | + limit = "" if length is None else f" LIMIT {required_len}" |
| 223 | + query = f""" |
| 224 | + SELECT timestamp, value |
| 225 | + FROM {table_name} |
| 226 | + WHERE {where_clause} |
| 227 | + ORDER BY timestamp |
| 228 | + {limit} |
| 229 | + """ |
| 230 | + df = self._store.read_query( |
| 231 | + table_name, |
| 232 | + query, |
| 233 | + params=tuple(params), |
| 234 | + connection=connection, |
| 235 | + ) |
| 236 | + if len(df) != required_len: |
| 237 | + msg = f"Bug: {len(df)=} {length=} {required_len=}" |
| 238 | + raise Exception(msg) |
| 239 | + values = df["value"].values |
| 240 | + if metadata.quantity_metadata is not None: |
| 241 | + np_array = metadata.quantity_metadata.quantity_type( |
| 242 | + values, metadata.quantity_metadata.units |
| 243 | + ) |
| 244 | + else: |
| 245 | + np_array = values |
| 246 | + return SingleTimeSeries( |
| 247 | + uuid=metadata.time_series_uuid, |
| 248 | + variable_name=metadata.variable_name, |
| 249 | + resolution=metadata.resolution, |
| 250 | + initial_time=start_time or metadata.initial_time, |
| 251 | + data=np_array, |
| 252 | + normalization=metadata.normalization, |
| 253 | + ) |
| 254 | + |
| 255 | + @contextmanager |
| 256 | + def open_time_series_store(self) -> Generator[Connection, None, None]: |
| 257 | + with self._store.engine.begin() as conn: |
| 258 | + yield conn |
| 259 | + |
| 260 | + def _to_dataframe(self, time_series: SingleTimeSeries, db_id: int) -> pd.DataFrame: |
| 261 | + if isinstance(time_series.data, pint.Quantity): |
| 262 | + array = time_series.data.magnitude |
| 263 | + else: |
| 264 | + array = time_series.data |
| 265 | + df = pd.DataFrame({"timestamp": time_series.make_timestamps(), "value": array}) |
| 266 | + df["id"] = db_id |
| 267 | + return df |
| 268 | + |
| 269 | + def _get_db_id(self, time_series_uuid: UUID) -> int: |
| 270 | + db_id = self._uuid_lookup.get(time_series_uuid) |
| 271 | + if db_id is None: |
| 272 | + msg = f"Bug: time series {time_series_uuid} not stored" |
| 273 | + raise Exception(msg) |
| 274 | + return db_id |
| 275 | + |
| 276 | + |
| 277 | +@singledispatch |
| 278 | +def _get_table_name(time_series) -> str: |
| 279 | + msg = f"Bug: {type(time_series)}" |
| 280 | + raise NotImplementedError(msg) |
| 281 | + |
| 282 | + |
| 283 | +@_get_table_name.register(SingleTimeSeries) |
| 284 | +def _(time_series) -> str: |
| 285 | + return _get_single_time_series_table_name( |
| 286 | + time_series.initial_time, time_series.resolution, time_series.length |
| 287 | + ) |
| 288 | + |
| 289 | + |
| 290 | +@_get_table_name.register(SingleTimeSeriesMetadata) |
| 291 | +def _(metadata) -> str: |
| 292 | + return _get_single_time_series_table_name( |
| 293 | + metadata.initial_time, metadata.resolution, metadata.length |
| 294 | + ) |
| 295 | + |
| 296 | + |
| 297 | +@_get_table_name.register(SingleTimeSeriesKey) |
| 298 | +def _(key) -> str: |
| 299 | + return _get_single_time_series_table_name(key.initial_time, key.resolution, key.length) |
| 300 | + |
| 301 | + |
| 302 | +def _get_single_time_series_table_name( |
| 303 | + initial_time: datetime, |
| 304 | + resolution: timedelta, |
| 305 | + length: int, |
| 306 | +) -> str: |
| 307 | + return "_".join( |
| 308 | + ( |
| 309 | + _SINGLE_TIME_SERIES_BASE_NAME, |
| 310 | + initial_time.isoformat().replace("-", "_").replace(":", "_"), |
| 311 | + str(resolution.seconds), |
| 312 | + str(length), |
| 313 | + ) |
| 314 | + ) |
| 315 | + |
| 316 | + |
| 317 | +@singledispatch |
| 318 | +def _get_table_base_name(time_series) -> str: |
| 319 | + msg = "Bug: need to implement _get_table_base_name for {type(time_series)}" |
| 320 | + raise NotImplementedError(msg) |
| 321 | + |
| 322 | + |
| 323 | +@_get_table_base_name.register(SingleTimeSeries) |
| 324 | +def _(time_series: SingleTimeSeries) -> str: |
| 325 | + return _SINGLE_TIME_SERIES_BASE_NAME |
| 326 | + |
| 327 | + |
| 328 | +@singledispatch |
| 329 | +def _make_time_config(time_series) -> Any: |
| 330 | + msg = "Bug: need to implement _make_time_config for {type(time_series)}" |
| 331 | + raise NotImplementedError(msg) |
| 332 | + |
| 333 | + |
| 334 | +@_make_time_config.register(SingleTimeSeries) |
| 335 | +def _(time_series: SingleTimeSeries) -> DatetimeRange: |
| 336 | + return DatetimeRange( |
| 337 | + start=time_series.initial_time, |
| 338 | + resolution=time_series.resolution, |
| 339 | + length=len(time_series.data), |
| 340 | + time_column="timestamp", |
| 341 | + ) |
| 342 | + |
| 343 | + |
| 344 | +def _make_table_schema(time_series: TimeSeriesData, table_name: str) -> TableSchema: |
| 345 | + return TableSchema( |
| 346 | + name=table_name, |
| 347 | + value_column="value", |
| 348 | + time_array_id_columns=["id"], |
| 349 | + time_config=_make_time_config(time_series), |
| 350 | + ) |
0 commit comments