-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_voting.py
292 lines (260 loc) · 13 KB
/
eval_voting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import time
import argparse
import importlib
import multiprocessing
import logging
import numpy as np
from definitions import WEIGHT_DIR
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from utils import dataset # noqa: E402
from utils.voting import voting # noqa: E402
from train import initLog, get_optimizer, run as run_training # noqa: E402
LOG = logging.getLogger(__name__)
def run(
model: str,
voting_tag: str,
voting_times: int,
train_ds_path: str,
val_ds_path: str,
test_ds_paths: list,
test_add_retrain_sizes: list,
test_retrain_times: int = 1,
test_retrain_has_random: bool = True,
classes=2, # 分類類別
sample_size=[32000, 1], # 訓練音訊頻率
epochs=160,
batch_size=150,
lr=1.0, # learning rate
optimizer='adadelta',
loss='categorical_crossentropy',
metrics=['accuracy'],
num_gpus=2, # number of gpus
debug: bool = False,
explainable=False,
filter_x=45,
filter_y=120,
magnification=4,
seed=None,
use_saved_inital_weight=False,
enabled_transfer_learning=False,
verbose=1,
skip_origin=False
):
initLog(debug)
import tensorflow as tf
Model = importlib.import_module(f'models.{model}').__getattribute__(model)
start = time.time()
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join([str(i) for i in range(num_gpus)])
input_shape = tuple(sample_size)
voting_tags = [f'{voting_tag}-{i}' for i in range(voting_times)]
tag = voting_tag.replace('.', '_').replace(' ', '_').replace('/', '_').replace('\\', '_')
LOG.info(f'Model: {tag}')
mgr = multiprocessing.Manager()
# Testing ------------------------------------------------------------------------------------------
cls_results = {s: mgr.list() for s in test_ds_paths}
cls_results['ground_truth'] = {}
total_acc = mgr.list([0 for _ in test_ds_paths])
acc_list = mgr.list([mgr.list() for _ in test_ds_paths])
LOG.info('Run test')
for index, _tag in enumerate(voting_tags):
def test():
strategy = tf.distribute.MirroredStrategy(devices=[f'/gpu:{i}' for i in range(num_gpus)])
with strategy.scope():
_model = Model(input_shape, classes).model()
_model.compile(loss=loss, optimizer=get_optimizer(optimizer, lr), metrics=metrics)
_model.load_weights(os.path.join(WEIGHT_DIR, _tag + '.h5'))
# Evaluation
for i, test_ds_path in enumerate(test_ds_paths):
test_ds = dataset.load(test_ds_path).batch(batch_size)
score, acc = _model.evaluate(test_ds, verbose=0)
result = _model.predict(test_ds)
cls_results[test_ds_path].append(np.where(result >= 0.5, 1, 0))
acc_list[i].append(acc)
total_acc[i] += acc
LOG.debug(f'no.{index + 1}, score={score}, acc={acc}')
del test_ds
del _model
p = multiprocessing.Process(target=test)
p.start()
p.join()
if not skip_origin:
training_kwargs = {
'test_ds_paths': [ds.replace('train', 'test') for ds in test_ds_paths],
'times': test_retrain_times,
'tag': train_ds_path,
'classes': classes,
'sample_size': sample_size,
'epochs': epochs,
'batch_size': batch_size,
'lr': lr,
'optimizer': optimizer,
'loss': loss,
'metrics': metrics,
'num_gpus': num_gpus,
'training': True,
'seed': seed,
'use_saved_inital_weight': use_saved_inital_weight,
'verbose': verbose
}
p = multiprocessing.Process(target=run_training, args=(model, train_ds_path, val_ds_path), kwargs=training_kwargs)
p.start()
p.join()
for i, test_ds_path in enumerate(test_ds_paths):
LOG.info(f"Dataset {test_ds_path}")
for index in range(voting_times):
LOG.info(f"第{index+1}次正確率:{acc_list[i][index]:.4f}")
average_acc = total_acc[i] / len(acc_list[i])
LOG.info(f"Average_acc: {average_acc*100:.6f}%")
# Dataset must have train and test set
real_test_ds_path = test_ds_path.replace('train', 'test')
ground_truth = np.array(dataset.get_ground_truth(test_ds_path))
cls_results['ground_truth'][test_ds_path] = ground_truth
voting_acc, _, voting_rate_list = voting(cls_results[test_ds_path], ground_truth, f'{tag}_{test_ds_path}')
LOG.info(f"Voting_acc: {voting_acc*100:.6f}%")
voting_rate_list = np.array(sum(voting_rate_list, [])[::-1])
LOG.info(f"Voting_rate_list_size: {len(voting_rate_list)}")
LOG.info(f"Voting_unconfident_top_10: {voting_rate_list[:10]}")
for length in test_add_retrain_sizes:
if length > voting_rate_list.shape[0]:
break
if test_retrain_has_random:
# base line training
training_kwargs = {
'test_ds_paths': [real_test_ds_path],
'train_ds_size': length,
'times': test_retrain_times,
'tag': f'{test_ds_path}_RNG_{length}',
'classes': classes,
'sample_size': sample_size,
'epochs': epochs,
'batch_size': batch_size,
'lr': lr,
'optimizer': optimizer,
'loss': loss,
'metrics': metrics,
'num_gpus': num_gpus,
'training': True,
'seed': seed,
'use_saved_inital_weight': use_saved_inital_weight,
'verbose': verbose
}
p = multiprocessing.Process(target=run_training, args=(model, test_ds_path, real_test_ds_path), kwargs=training_kwargs)
p.start()
p.join()
# train_ds + base line training
training_kwargs = {
'additional_ds_path': test_ds_path,
'additional_ds_size': length,
'test_ds_paths': [real_test_ds_path],
'times': test_retrain_times,
'tag': f'{train_ds_path}+{test_ds_path}_RNG_{length}',
'classes': classes,
'sample_size': sample_size,
'epochs': epochs,
'batch_size': batch_size,
'lr': lr,
'optimizer': optimizer,
'loss': loss,
'metrics': metrics,
'num_gpus': num_gpus,
'training': True,
'seed': seed,
'use_saved_inital_weight': use_saved_inital_weight,
'enabled_transfer_learning': enabled_transfer_learning,
'enabled_transfer_learning_weights': voting_tags,
'verbose': verbose
}
p = multiprocessing.Process(target=run_training, args=(model, train_ds_path, val_ds_path), kwargs=training_kwargs)
p.start()
p.join()
# train_ds + uncertain base line training
training_kwargs = {
'additional_ds_path': test_ds_path,
'additional_ds_indexes': voting_rate_list[:length],
'test_ds_paths': [real_test_ds_path],
'times': test_retrain_times,
'tag': f'{train_ds_path}+{test_ds_path}_UNC_{length}',
'classes': classes,
'sample_size': sample_size,
'epochs': epochs,
'batch_size': batch_size,
'lr': lr,
'optimizer': optimizer,
'loss': loss,
'metrics': metrics,
'num_gpus': num_gpus,
'training': True,
'seed': seed,
'use_saved_inital_weight': use_saved_inital_weight,
'enabled_transfer_learning': enabled_transfer_learning,
'enabled_transfer_learning_weights': voting_tags,
'verbose': verbose
}
p = multiprocessing.Process(target=run_training, args=(model, train_ds_path, val_ds_path), kwargs=training_kwargs)
p.start()
p.join()
end = time.time()
elapsed = end - start
LOG.info(f"Time taken: {elapsed:.3f} seconds.")
_examples = '''examples:
# Train SCNN 18Layers using the keras:
python %(prog)s \\
--model SCNN18 \\
--voting_tag 2021-01-23/20210123-12_SCNN18_SCNN-Jamendo-train_h5 \\
--voting_times 21 \\
--train_ds_path SCNN-Jamendo-train.h5 \\
--val_ds_path SCNN-Jamendo-test.h5 \\
--test_ds_paths SCNN-Taiwanese-stream-train.h5 SCNN-Classical-test.h5 \\
--test_add_retrain_sizes 100 200 300 400 500 600 700 800 900 1000 \\
--test_retrain_times 1 \\
--test_retrain_has_random \\
--classes 2 \\
--sample_size 32000 1 \\
--epochs 160 \\
--batch_size 150 \\
--loss categorical_crossentropy \\
--optimizer adadelta \\
--metrics accuracy \\
--lr 1.0 \\
--seed 0
'''
def main():
parser = argparse.ArgumentParser(description="Train SCNN 18Layers", epilog=_examples, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--model', required=True, help="SCNN18,SCNN36,AutoEncoderRemoveVocal")
parser.add_argument('--voting_tag', required=True, help="Trained Model tag")
parser.add_argument('--voting_times', required=True, help="How many trained models?(default: %(default)s)", default=21, type=int)
parser.add_argument('--train_ds_path', required=True, help='Training dataset path')
parser.add_argument('--val_ds_path', required=True, help='validation dataset path')
parser.add_argument(
'--test_ds_paths',
help='Testing dataset paths; Required pair dataset include train and test ; Use train in here; (default: %(default)s)',
nargs='+',
default=['train.h5']
)
parser.add_argument('--test_add_retrain_sizes', help='Add some test_set to train_set(default: %(default)s)', type=int, nargs='+', default=[100])
parser.add_argument('--test_retrain_times', required=True, help="How many times do you train?(default: %(default)s)", default=1, type=int)
parser.add_argument('--test_retrain_has_random', help="Also trained in random?(default: %(default)s)", default=False, action='store_true')
parser.add_argument('--classes', help='Output class number(default: %(default)s)', default=2, type=int)
parser.add_argument('--sample_size', help='Audio sample size(default: %(default)s)', nargs='+', type=int, default=[32000, 1])
parser.add_argument('--epochs', help="epochs (default: %(default)s)", default=160, type=int)
parser.add_argument('--batch_size', help="batch_size (default: %(default)s)", default=150, type=int)
parser.add_argument('--loss', help="loss(default: %(default)s)", default='categorical_crossentropy', type=str)
parser.add_argument('--optimizer', help="optimizer(default: %(default)s)", default='adadelta', type=str)
parser.add_argument('--metrics', help="metrics(default: %(default)s)", nargs='+', default=['accuracy'])
parser.add_argument('--lr', help="learning rate(default: %(default)s for optimizer default value)", default=0.0, type=float)
parser.add_argument('--explainable', help="Run explainable?(default: %(default)s)", default=False, action='store_true')
parser.add_argument('--filter_x', help="Explainable filter_x(default: %(default)s)", default=45, type=int)
parser.add_argument('--filter_y', help="Explainable filter_y(default: %(default)s)", default=120, type=int)
parser.add_argument('--magnification', help="Explainable magnification(default: %(default)s)", default=4, type=int)
parser.add_argument('--num_gpus', help="Number of gpus(default: %(default)s)", default=2, type=int)
parser.add_argument('--debug', help="Is debuging?(default: %(default)s)", default=False, action='store_true')
parser.add_argument('--seed', help="Random seed (default: %(default)s)", type=int)
parser.add_argument('--verbose', help="Verbose (default: %(default)s)", default=1, type=int)
parser.add_argument('--use_saved_inital_weight', help="use saved inital weight(default: %(default)s)", default=False, action='store_true')
parser.add_argument('--skip_origin', help="skip training origin weight(default: %(default)s)", default=False, action='store_true')
parser.add_argument('--enabled_transfer_learning', help="enabled transfer learnning(default: %(default)s)", default=False, action='store_true')
args = parser.parse_args()
run(**vars(args))
if __name__ == "__main__":
main()