forked from Terraspace/UASM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodegenv2.c
2000 lines (1816 loc) · 61.8 KB
/
codegenv2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "codegenv2.h"
#include <time.h>
#include "globals.h"
#include "parser.h"
#include "segment.h"
#include "extern.h"
#include "fixup.h"
#include "fastpass.h"
#include "myassert.h"
#include "types.h"
#include "macro.h"
#include "listing.h"
#include "limits.h"
#define OutputCodeByte( x ) OutputByte( x )
const char szNullStr[] = { "<NULL>" };
struct Mem_Def* MemTable = NULL;
struct Instr_Def* InstrHash[16384];
#ifdef _WIN32
#else
#ifndef INT_MIN
#define INT_MIN (-2147483647 - 1) // minimum (signed) int value
#endif
#ifndef INT_MAX
#define INT_MAX 2147483647 // maximum (signed) int value
#endif
#ifndef UINT_MAX
#define UINT_MAX 0xffffffff // maximum unsigned int value
#endif
#ifndef UCHAR_MAX
#define UCHAR_MAX 0xff // maximum unsigned char value
#endif
#endif
#include "MemTable32.h"
#include "MemTable64.h"
#include "InstrTableV2.h"
static unsigned int hash(const uint_8* data, int size)
/******************************************/
{
uint_64 fnv_basis = 14695981039346656037;
uint_64 register fnv_prime = 1099511628211;
uint_64 h = fnv_basis;
int cnt = 0;
for (cnt = 0; cnt < size; cnt++) {
h ^= *data++;
h *= fnv_prime;
}
return((((h >> 49) ^ h) & 0x3fff));
}
struct Instr_Def* AllocInstruction()
{
return malloc(sizeof(struct Instr_Def));
}
void InsertInstruction(struct Instr_Def* pInstruction, uint_32 hash)
{
struct Instr_Def* curPtr = NULL;
curPtr = InstrHash[hash];
if (curPtr == NULL)
{
InstrHash[hash] = pInstruction;
return;
}
while (curPtr->next != NULL)
{
curPtr = curPtr->next;
}
curPtr->next = pInstruction;
}
uint_32 GenerateInstrHash(struct Instr_Def* pInstruction)
{
uint_8 hashBuffer[32];
int len = 0;
char* pDst = (char*)&hashBuffer;
strcpy(pDst, pInstruction->mnemonic);
/* String hash is case-insensitive. */
for (int i = 0; i < strlen(pInstruction->mnemonic); i++)
{
hashBuffer[i] = tolower(hashBuffer[i]);
}
len += strlen(pInstruction->mnemonic);
pDst += len;
*(pDst + 0) = pInstruction->operand_types[0];
*(pDst + 1) = pInstruction->operand_types[1];
*(pDst + 2) = pInstruction->operand_types[2];
*(pDst + 3) = pInstruction->operand_types[3];
*(pDst + 4) = pInstruction->operand_types[4];
len += 4;
pDst += 4;
return hash(&hashBuffer, len);
}
void BuildInstructionTable(void)
{
uint_32 hash = 0;
struct Instr_Def* pInstrTbl = &InstrTableV2;
uint_32 i = 0;
uint_32 instrCount = sizeof(InstrTableV2) / sizeof(struct Instr_Def);
memset(InstrHash, 0, sizeof(InstrHash));
for (i = 0; i < instrCount; i++, pInstrTbl++)
{
struct Instr_Def* pInstr = AllocInstruction();
memcpy(pInstr, pInstrTbl, sizeof(struct Instr_Def));
hash = GenerateInstrHash(pInstr);
InsertInstruction(pInstr, hash);
}
}
/* =====================================================================
Some instruction forms require specific registers such as AX or CL.
Demotion allows us to check the instruction table twice, once using the explicit register should it exist,
secondly after demotion to look for a generic case.
===================================================================== */
enum op_type DemoteOperand(enum op_type op) {
enum op_type ret = op;
if (op == R8_AL)
ret = R8;
else if (op == R16_AX)
ret = R16;
else if (op == R32_EAX)
ret = R32;
else if (op == R64_RAX)
ret = R64;
else if (op == R8_CL)
ret = R8;
else if (op == R16_CX)
ret = R16;
else if (op == R32_ECX)
ret = R32;
else if (op == R64_RCX)
ret = R64;
else if (op == R16_DX)
ret = R16;
/* We must be careful that an instruction can only have one demotable operand at a time */
else if (op == M8 || op == M16 || op == M32 || op == M48 || op == M64 || op == M80 || op == M128 || op == M256 || op == M512)
ret = M_ANY;
return(ret);
}
enum op_type MatchOperand(struct code_info* CodeInfo, struct opnd_item op, struct expr opExpr) {
enum op_type result;
switch (op.type)
{
case OP_M:
result = M_ANY;
break;
case OP_M08:
result = M8;
break;
case OP_M16:
result = M16;
break;
case OP_M32:
result = M32;
break;
case OP_M64:
result = M64;
break;
case OP_M48:
result = M48;
break;
case OP_M80:
result = M80;
break;
case OP_M128:
result = M128;
break;
case OP_M256:
result = M256;
break;
case OP_M512:
result = M512;
break;
case OP_SR86:
result = R_SEG;
break;
case OP_SR:
result = R_SEG;
break;
case OP_SR386:
result = R_SEGE;
break;
case OP_RSPEC:
result = R_RIP;
/* If the register operand is cr0-cr8 (Parser error generates OP.type == RSPEC for these) */
if (strcasecmp(opExpr.base_reg->string_ptr, "cr0") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "cr2") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "cr3") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "cr4") == 0)
{
result = R_CR;
}
else if (strcasecmp(opExpr.base_reg->string_ptr, "cr8") == 0)
{
result = R_CR8;
}
/* If the register operand is dr0-dr7 (Parser error generates OP.type == R_RIP for these) */
else if (strcasecmp(opExpr.base_reg->string_ptr, "dr0") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr1") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr2") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr3") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr4") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr5") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr6") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr7") == 0)
{
result = R_DR;
}
break;
case OP_K:
result = R_K;
break;
case OP_RIP:
result = R_RIP;
/* If the register operand is cr0-cr8 (Parser error generates OP.type == R_RIP for these) */
if (strcasecmp(opExpr.base_reg->string_ptr, "cr0") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "cr2") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "cr3") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "cr4") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "cr8") == 0)
{
result = R_CR;
}
else if (strcasecmp(opExpr.base_reg->string_ptr, "cr8") == 0)
{
result = R_CR8;
}
/* If the register operand is dr0-dr7 (Parser error generates OP.type == R_RIP for these) */
else if (strcasecmp(opExpr.base_reg->string_ptr, "dr0") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr1") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr2") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr3") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr4") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr5") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr6") == 0 ||
strcasecmp(opExpr.base_reg->string_ptr, "dr7") == 0)
{
result = R_DR;
}
break;
case OP_AL:
result = R8_AL;
break;
case OP_CL:
result = R8_CL;
break;
case OP_AX:
result = R16_AX;
break;
case OP_EAX:
result = R32_EAX;
break;
case OP_RAX:
result = R64_RAX;
break;
case OP_NONE:
result = OP_N;
break;
case OP_R8:
result = R8;
/* If AL is somehow passed in as an OP_R8, promote it first */
if (opExpr.base_reg->tokval == T_AL)
result = R8_AL;
/* If the register operand is ah,bh,ch,dh */
if (opExpr.base_reg->tokval >= T_AH && opExpr.base_reg->tokval <= T_BH)
result = R8H;
/* If the register operand is r8b-r15b */
else if (opExpr.base_reg->tokval >= T_R8B && opExpr.base_reg->tokval <= T_R15B)
result = R8E;
else if (opExpr.base_reg->tokval >= T_SPL && opExpr.base_reg->tokval <= T_DIL)
result = R8U;
break;
case OP_DX:
result = R16_DX;
break;
case OP_R16:
result = R16;
/* If AX is somehow passed in as an OP_R16, promote it first */
if (opExpr.base_reg->tokval == T_AX)
result = R16_AX;
/* If the register operand is r8w-r15w */
else if (opExpr.base_reg->tokval >= T_R8W && opExpr.base_reg->tokval <= T_R15W)
result = R16E;
break;
case OP_R32:
result = R32;
/* If EAX is somehow passed in as an OP_R32, promote it first */
if (opExpr.base_reg->tokval == T_EAX)
result = R32_EAX;
/* If the register operand is r8d-r15d */
else if (opExpr.base_reg->tokval >= T_R8D && opExpr.base_reg->tokval <= T_R15D)
result = R32E;
break;
case OP_R64:
result = R64;
/* If RAX is somehow passed in as an OP_R64, promote it first */
if (opExpr.base_reg->tokval == T_RAX)
result = R64_RAX;
/* If the register operand is r8-r15 */
else if (opExpr.base_reg->tokval >= T_R8 && opExpr.base_reg->tokval <= T_R15)
result = R64E;
break;
case OP_I8:
result = IMM8;
break;
case OP_I16:
result = IMM16;
break;
case OP_I32:
result = IMM32;
break;
case OP_I48:
result = IMM48;
break;
case OP_I64:
result = IMM64;
break;
case OP_XMM:
result = R_XMM;
break;
case OP_YMM:
result = R_YMM;
break;
case OP_ZMM:
result = R_ZMM;
break;
case OP_MMX:
result = MMX64;
case OP_ST:
result = R_ST0;
break;
case OP_ST_REG:
result = R_ST;
break;
}
return result;
}
struct Instr_Def* LookupInstruction(struct Instr_Def* instr, bool memReg, unsigned char encodeMode, int srcRegNo, int dstRegNo, struct code_info* CodeInfo)
{
uint_32 hash;
struct Instr_Def* pInstruction = NULL;
bool matched = FALSE;
hash = GenerateInstrHash(instr);
pInstruction = InstrHash[hash];
while (pInstruction != NULL)
{
if (strcasecmp(pInstruction->mnemonic, instr->mnemonic) == 0 &&
pInstruction->operand_types[0] == instr->operand_types[0] &&
pInstruction->operand_types[1] == instr->operand_types[1] &&
pInstruction->operand_types[2] == instr->operand_types[2] &&
pInstruction->operand_types[3] == instr->operand_types[3] &&
(pInstruction->validModes & encodeMode) != 0)
{
/* If the instruction only supports absolute or displacement only addressing
and we have a register in the memory expression, this is not a match */
if (memReg && ((pInstruction->flags & NO_MEM_REG) != 0))
goto nextInstr;
/* We have duplicate entries in the table when there is a limiting factor based on register no, rule it out, this doesn't apply to evex */
if ((((uint_32)pInstruction->flags & (uint_32)SRCHDSTL) != 0) && ((srcRegNo <= 7 && dstRegNo > 7) || (srcRegNo <= 7 && dstRegNo <= 7) || (srcRegNo > 7 && dstRegNo > 7) || CodeInfo->evex_flag))
goto nextInstr;
/* Here we match broadcast size and element count v2.50 */
if (broadflags) {
if (CodeInfo->token == T_VCVTPD2PS || CodeInfo->token == T_VCVTTPD2DQ) {
if ((pInstruction->op_elements == 2) && (broadflags == 0x10)) {
if (broadflags == pInstruction->op_size)
;
}
else if ((pInstruction->op_elements == 4) && (broadflags == 0x20)) {
if (broadflags == pInstruction->op_size)
;
}
else if ((pInstruction->op_elements == 8) && (broadflags == 0x30)) {
if (pInstruction->op_size == 0X40)
;
}
else goto nextInstr; /* here we can throw an error because these 3 were the only correct options */
}
}
matched = TRUE;
break;
}
nextInstr:
pInstruction = pInstruction->next;
}
if (!matched)
pInstruction = NULL;
return pInstruction;
}
bool Require_OPND_Size_Override(struct Instr_Def* instr, struct code_info* CodeInfo)
{
if (instr->useOSO == OP_SIZE_OVERRIDE)
{
if (instr->op_size == 2 && (ModuleInfo.Ofssize == USE32 || ModuleInfo.Ofssize == USE64))
return TRUE;
if (instr->op_size == 4 && ModuleInfo.Ofssize == USE16)
return TRUE;
}
return FALSE;
}
bool Require_ADDR_Size_Override(struct Instr_Def* instr, struct code_info* CodeInfo)
{
return FALSE;
}
bool IsValidInCPUMode(struct Instr_Def* instr)
{
bool result = TRUE;
unsigned char cpuModes = instr->validModes;
/* Don't allow a 64bit instruction in a non 64bit segment */
if (ModuleInfo.Ofssize != USE64 && cpuModes == X64)
result = FALSE;
if (ModuleInfo.Ofssize == USE64 && (cpuModes & X64) == 0)
result = FALSE;
/* Are we allowing assembly of priviledge instructions? */
if ((instr->cpu & P_PM) > (ModuleInfo.curr_cpu & P_PM))
result = FALSE;
return result;
}
/* =====================================================================
Given an input token (string) for a register name, match it and return
the correct register number for encoding reg/rm fields.
===================================================================== */
unsigned char GetRegisterNo(struct asm_tok* regTok)
{
unsigned char regNo = 17;
if (regTok)
{
if (regTok->tokval >= T_RAX && regTok->tokval <= T_RIP)
regNo = (unsigned char)(regTok->tokval - T_RAX);
else if (regTok->tokval >= T_EAX && regTok->tokval <= T_EDI)
regNo = (unsigned char)(regTok->tokval - T_EAX);
else if (regTok->tokval >= T_R8D && regTok->tokval <= T_R15D)
regNo = (unsigned char)((regTok->tokval - T_R8D) + 8);
else if (regTok->tokval >= T_R8W && regTok->tokval <= T_R15W)
regNo = (unsigned char)((regTok->tokval - T_R8W) + 8);
else if (regTok->tokval >= T_AL && regTok->tokval <= T_BH)
regNo = (unsigned char)(regTok->tokval - T_AL);
else if (regTok->tokval >= T_R8B && regTok->tokval <= T_R15B)
regNo = (unsigned char)((regTok->tokval - T_R8B) + 8);
else if (regTok->tokval >= T_AX && regTok->tokval <= T_DI)
regNo = (unsigned char)(regTok->tokval - T_AX);
else if (regTok->tokval >= T_MM0 && regTok->tokval <= T_MM7)
regNo = (unsigned char)(regTok->tokval - T_MM0);
else if (regTok->tokval >= T_XMM0 && regTok->tokval <= T_XMM7)
regNo = (unsigned char)(regTok->tokval - T_XMM0);
else if (regTok->tokval >= T_XMM8 && regTok->tokval <= T_XMM15)
regNo = (unsigned char)((regTok->tokval - T_XMM8) + 8);
else if (regTok->tokval >= T_XMM16 && regTok->tokval <= T_XMM23)
regNo = (unsigned char)((regTok->tokval - T_XMM16) + 16);
else if (regTok->tokval >= T_XMM24 && regTok->tokval <= T_XMM31)
regNo = (unsigned char)((regTok->tokval - T_XMM24) + 24);
else if (regTok->tokval >= T_YMM0 && regTok->tokval <= T_YMM7)
regNo = (unsigned char)(regTok->tokval - T_YMM0);
else if (regTok->tokval >= T_YMM8 && regTok->tokval <= T_YMM15)
regNo = (unsigned char)((regTok->tokval - T_YMM8) + 8);
else if (regTok->tokval >= T_YMM16 && regTok->tokval <= T_YMM23)
regNo = (unsigned char)((regTok->tokval - T_YMM16) + 16);
else if (regTok->tokval >= T_YMM24 && regTok->tokval <= T_YMM31)
regNo = (unsigned char)((regTok->tokval - T_YMM24) + 24);
else if (regTok->tokval >= T_ZMM0 && regTok->tokval <= T_ZMM7)
regNo = (unsigned char)(regTok->tokval - T_ZMM0);
else if (regTok->tokval >= T_ZMM8 && regTok->tokval <= T_ZMM31)
regNo = (unsigned char)((regTok->tokval - T_ZMM8) + 8);
else if (regTok->tokval >= T_K0 && regTok->tokval <= T_K7)
regNo = (unsigned char)(regTok->tokval - T_K0);
else
{
switch (regTok->tokval)
{
/* 8bit */
case T_SPL:
regNo = 4;
break;
case T_BPL:
regNo = 5;
break;
case T_SIL:
regNo = 6;
break;
case T_DIL:
regNo = 7;
break;
case T_CR0:
regNo = 0;
break;
case T_CR2:
regNo = 2;
break;
case T_CR3:
regNo = 3;
break;
case T_CR4:
regNo = 4;
break;
case T_CR8:
regNo = 8;
break;
case T_DR0:
regNo = 0;
break;
case T_DR1:
regNo = 1;
break;
case T_DR2:
regNo = 2;
break;
case T_DR3:
regNo = 3;
break;
case T_DR6:
regNo = 6;
break;
case T_DR7:
regNo = 7;
break;
case T_CS:
regNo = 1;
break;
case T_DS:
regNo = 3;
break;
case T_ES:
regNo = 0;
break;
case T_FS:
regNo = 4;
break;
case T_GS:
regNo = 5;
break;
case T_SS:
regNo = 2;
break;
case T_ST:
regNo = 0;
break;
}
}
}
return regNo;
}
/* =====================================================================
Build up instruction ModRM byte.
===================================================================== */
unsigned char BuildModRM(unsigned char modRM, struct Instr_Def* instr, struct expr opnd[4], bool* needModRM, bool* needSIB, bool isVEX)
{
int sourceIdx = 1;
/* VEX encoded instructions use the middle (NDS) registers in the VEX prefix bytes, so in this case
the 3rd operand reg/mem is the one that is actually encoded in the mod rm byte.
For Implicit NDS (2 opnd promotion we leave source as 1) */
if (isVEX && (instr->vexflags & VEX_DUP_NDS) == 0 && (instr->vexflags & VEX_2OPND) == 0 && (instr->vexflags & VEX_3RD_OP) == 0)
sourceIdx = 2;
if (instr->flags & F_MODRM) /* Only if the instruction requires a ModRM byte, else return 0. */
{
*needModRM |= TRUE;
/* 7 5 2 0
/ +---+---+---+---+---+---+---+---+
/ | mod | reg | rm |
/ +---+---+---+---+---+---+---+---+
/ MODRM.mod (2bits) == b11, register to register direct, otherwise register indirect.
/ MODRM.reg (3bits) == 3bit opcode extension, 3bit register value as source. REX.R, VEX.~R can 1bit extend this field.
/ MODRM.rm (3bits) == 3bit direct or indirect register operand, optionally with displacement. REX.B, VEX.~B can 1bit extend this field. */
if (instr->flags & OPCODE_EXT)
{
/* If the instruction uses an opcode extension value in the ModRM.REG, its value */
/* will be specified as an extra byte in the opcode byte data. */
modRM |= (instr->opcode[(int)instr->opcode_bytes]) << 3;
}
if (instr->flags & F_MODRM_REG && instr->op_dir == REG_DST)
{
/* Build REG field as destination. */
modRM |= (GetRegisterNo(opnd[0].base_reg) & 0x07) << 3;
}
else if (instr->flags & F_MODRM_REG && instr->op_dir == RM_DST)
{
/* Build REG field as source. */
modRM |= (GetRegisterNo(opnd[sourceIdx].base_reg) & 0x07) << 3;
}
if (instr->flags & F_MODRM_RM && instr->op_dir == REG_DST)
{
/* Build RM field as source. */
modRM |= (GetRegisterNo(opnd[sourceIdx].base_reg) & 0x07);
}
else if (instr->flags & F_MODRM_RM && instr->op_dir == RM_DST)
{
/* Build RM field as destination. */
modRM |= (GetRegisterNo(opnd[0].base_reg) & 0x07);
}
}
return modRM;
}
/* =====================================================================
Build up instruction REX prefix byte.
===================================================================== */
unsigned char BuildREX(unsigned char RexByte, struct Instr_Def* instr, struct expr opnd[4])
{
/* Only if the identified instruction requires a REX prefix. */
/* REX flag is set which indicates the instruction table entry has preset values defining REX.R,.X,.B */
if (((uint_32)instr->flags & (uint_32)REX) != 0)
{
/* +---+---+---+---+---+---+---+---+ */
/* | 0 | 1 | 0 | 0 | W | R | X | B | */
/* +---+---+---+---+---+---+---+---+ */
/* W == 1=64bit operand size, else default operand size used (usually 32bit).
/ R == extend ModRM.reg
/ X == extend SIB.index
/ B == extend ModRM.rm or SIB.base */
RexByte |= 0x40; /* Fixed base value for REX prefix. */
if ((instr->flags & (uint_32)REXB) != 0)
RexByte |= 0x01;
if ((instr->flags & (uint_32)REXX) != 0)
RexByte |= 0x02;
if ((instr->flags & (uint_32)REXR) != 0)
RexByte |= 0x04;
if ((instr->flags & (uint_32)REXW) != 0)
RexByte |= 0x08;
}
/* EREX (or extended with REX) means we must programmatically determine the REX extensions. */
if (((uint_32)instr->flags & (uint_32)EREX) != 0)
{
if (instr->op_dir == REG_DST)
{
if (opnd[0].base_reg && GetRegisterNo(opnd[0].base_reg) > 7)
RexByte |= 0x44; /* Add REX.R */
if (opnd[instr->srcidx].base_reg && GetRegisterNo(opnd[instr->srcidx].base_reg) > 7)
RexByte |= 0x41; /* Add REX.B */
}
else
{
if (opnd[0].base_reg && GetRegisterNo(opnd[0].base_reg) > 7)
RexByte |= 0x41; /* Add REX.B */
if (opnd[instr->srcidx].base_reg && GetRegisterNo(opnd[instr->srcidx].base_reg) > 7)
RexByte |= 0x44; /* Add REX.R */
}
}
/* Instruction promoted with REX.W if specified memory operand is QWORD sized */
if ((uint_32)(instr->flags & (uint_32)REXP_MEM) != 0)
{
if (ModuleInfo.Ofssize != USE64)
{
EmitError(SIGN64_PROMOTION_NOT_POSSIBLE);
}
if (SizeFromMemtype(opnd[instr->memOpnd].mem_type, ModuleInfo.Ofssize, opnd[instr->memOpnd].type) == 8)
RexByte |= 0x48;
}
return RexByte;
}
/* =====================================================================
Build up instruction VEX prefix bytes.
===================================================================== */
void BuildVEX(bool* needVex, unsigned char* vexSize, unsigned char* vexBytes, struct Instr_Def* instr, struct expr opnd[4], bool needB, bool needX, uint_32 opCount)
{
/* VEX 3 byte form */
/* 7 0 7 0 */
/* +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+*/
/* |~R |~X |~B | map_select | |W/E| ~vvvv | L | pp |*/
/* +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+*/
/* A VEX instruction whose values for certain fields are VEX.~X == 1, VEX.~B == 1, VEX.W/E == 0 and map_select == b00001 may be encoded using the two byte VEX. */
/* VEX 2 byte form */
/* 7 0 */
/* +---+---+---+---+---+---+---+---+ */
/* |~R | ~vvvv | L | pp | */
/* +---+---+---+---+---+---+---+---+ */
/*
~R 1 bit This 1 - bit value is an 'inverted' extension to the MODRM.reg field.The inverse of REX.R.See Registers.
~X 1 bit This 1 - bit value is an 'inverted' extension to the SIB.index field.The inverse of REX.X.See 64 - bit addressing.
~B 1 bit This 1 - bit value is an 'inverted' extension to the MODRM.rm field or the SIB.base field.The inverse of REX.B.See 64 - bit addressing.
map_select 5 bits Specifies the opcode map to use.
W / E 1 bit For integer instructions : when 1, a 64 - bit operand size is used; otherwise, when 0, the default operand size is used(equivalent with REX.W).For non - integer instructions, this bit is a general opcode extension bit.
~vvvv 4 bits An additional operand for the instruction.The value of the XMM or YMM register (see Registers) is 'inverted'.
L 1 bit When 0, a 128 - bit vector lengh is used.Otherwise, when 1, a 256 - bit vector length is used.
pp 2 bits Specifies an implied mandatory prefix for the opcode.
Value Implied mandatory prefix
b00 none
b01 0x66
b10 0xF3
b11 0xF2
*/
unsigned char VEXl = 0;
unsigned char VEXpp = 0;
unsigned char VEXwe = 0;
unsigned char VEXvvvv = 0;
unsigned char VEXr = 1;
unsigned char VEXb = 1;
unsigned char VEXx = 1;
unsigned char VEXmmmmm = 0;
*needVex = TRUE;
*vexSize = 0;
/* VEX.vvvv */
if ((instr->vexflags & VEX_3RD_OP) != 0)
VEXvvvv = GetRegisterNo(opnd[2].base_reg);
else if ((instr->vexflags & VEX_NDS) != 0)
VEXvvvv = GetRegisterNo(opnd[1].base_reg);
else if ((instr->vexflags & VEX_DDS) != 0)
VEXvvvv = GetRegisterNo(opnd[2].base_reg);
/* Generated implicit NDS form and warn user about assumed source1 */
if ((instr->vexflags & VEX_DUP_NDS) != 0)
{
EmitWarn(1, AVX_REQUIRES_THREE_REGISTERS);
VEXvvvv = GetRegisterNo(opnd[0].base_reg);
}
/* VEX.pp value (used in both 2 and 3 byte forms) */
if ((instr->vexflags & VEX_66) != 0)
VEXpp = 0x01;
else if ((instr->vexflags & VEX_F3) != 0)
VEXpp = 0x02;
else if ((instr->vexflags & VEX_F2) != 0)
VEXpp = 0x03;
/* VEX.L value (used in both 2 and 3 byte forms) */
if (instr->op_size == 16)
VEXl = 0;
else if (instr->op_size == 32)
VEXl = 1;
/* VEX.w/e value (only present in 3 byte form) */
if ((instr->vexflags & VEX_W0) != 0)
VEXwe = 0;
else if ((instr->vexflags & VEX_W1) != 0)
{
VEXwe = 1;
*vexSize = 3;
}
/* Either of these flags mandate 3-byte VEX form */
if ((instr->vexflags & VEX_0F38) != 0 || (instr->vexflags & VEX_0F3A) != 0)
* vexSize = 3;
/* VEX.mmmmm field - determinant for 2/3 byte size */
if ((instr->vexflags & VEX_0F) != 0)
VEXmmmmm = 1;
else if ((instr->vexflags & VEX_0F38) != 0)
VEXmmmmm = 2;
else if ((instr->vexflags & VEX_0F3A) != 0)
VEXmmmmm = 3;
/* VEX.~r extension value */
if ((instr->vexflags & VEX_R) != 0)
VEXr = 0;
/* VEX.~x extension value */
if ((instr->vexflags & VEX_X) != 0 || needX)
VEXx = 0;
/* VEX.~b extension value */
if ((instr->vexflags & VEX_B) != 0 || needB)
VEXb = 0;
if (instr->op_dir == REG_DST)
{
if (opnd[0].base_reg && GetRegisterNo(opnd[0].base_reg) > 7)
VEXr = 0; /* REG_DST requires R~ extension */
if (opnd[instr->srcidx].base_reg && !opnd[instr->srcidx].indirect && GetRegisterNo(opnd[instr->srcidx].base_reg) > 7)
VEXb = 0; /* RM_SRC requires B~ extension */
}
else if (instr->op_dir == RM_DST)
{
if (opnd[instr->srcidx].base_reg && GetRegisterNo(opnd[instr->srcidx].base_reg) > 7)
VEXr = 0; /* REG_DST requires R~ extension */
if (opnd[0].base_reg && !opnd[0].indirect && GetRegisterNo(opnd[0].base_reg) > 7)
VEXb = 0; /* RM_SRC requires B~ extension */
}
/* If VEX.WIG is present and we don't need VEX.mmmmm use 2byte form */
if (((instr->vexflags & VEX_WIG) != 0 && VEXx == 1 && VEXb == 1 && VEXmmmmm == 1) ||
(*vexSize != 3 && VEXx == 1 && VEXb == 1))
* vexSize = 2;
/* Either VEX.x or VEX.b set require 3byte form */
if (VEXx == 0 || VEXb == 0)
* vexSize = 3;
/* Invert VEX.vvvv value */
VEXvvvv = ~VEXvvvv;
/* Output 2byte VEX form */
if (*vexSize == 2)
{
vexBytes[0] = 0xc5;
vexBytes[1] = (VEXpp) | (VEXl << 2) | ((VEXvvvv & 0xf) << 3) | (VEXr << 7);
}
/* Output 3byte VEX form */
else if (*vexSize == 3)
{
vexBytes[0] = 0xc4;
vexBytes[1] = (VEXr << 7) | (VEXx << 6) | (VEXb << 5) | (VEXmmmmm);
vexBytes[2] = (VEXwe << 7) | ((VEXvvvv & 0xf) << 3) | (VEXl << 2) | (VEXpp);
}
}
/* =====================================================================
Build up instruction EVEX prefix bytes.
===================================================================== */
void BuildEVEX(bool* needEvex, unsigned char* evexBytes, struct Instr_Def* instr, struct expr opnd[4], bool needB, bool needX, bool needRR, uint_32 opCount, struct code_info* CodeInfo)
{
/* BYTE0: EVEX prefix is always 4 bytes and the first byte is always 0x62.
BYTE1:
| 7 | 6 | 5 | 4 | 3 | 2 | 1-0 |
| R | X | B | R | 0 | 0 | m |
BYTE2:
| 7 | 6-3 | 2 | 1-0 |
| W | v | 1 | p |
BYTE3:
| 7 | 6 | 5 | 4 | 3 | 2-0 |
| z | L' | L | b | V' | a | */
unsigned char EVEXpp = 0;
unsigned char EVEXmm = 0;
unsigned char EVEXr = 1;
unsigned char EVEXx = 1;
unsigned char EVEXb = 1;
unsigned char EVEXnr = 0;
unsigned char EVEXl = 0;
unsigned char EVEXnl = 1;
unsigned char EVEXw = 0;
unsigned char EVEXvvvv = 0;
unsigned char EVEXaaa = 0;
unsigned char EVEXz = 0;
unsigned char EVEXbr = 0;
unsigned char EVEXnv = 1;
/* {z} decorator */
EVEXz = (decoflags & 0x80) >> 7;
/* {kn} opmask */
EVEXaaa = (decoflags & 7);
if ((instr->evexflags & EVEX_K) != 0 && EVEXaaa == 0)
EmitError(K_REGISTER_EXPECTED);
/* {1toN} broadcast
{1to2} == 0x10
{1to4} == 0x20
{1to8} == 0x30
{1to16} == 0x40 */
if (instr->op_elements == 16 && broadflags != 0x40 && broadflags != 0)
EmitError(MISMATCH_IN_THE_NUMBER_OF_BROADCASTING_ELEMENTS);
if (instr->op_elements == 8 && broadflags != 0x30 && broadflags != 0)
EmitError(MISMATCH_IN_THE_NUMBER_OF_BROADCASTING_ELEMENTS);
if (instr->op_elements == 4 && broadflags != 0x20 && broadflags != 0)
EmitError(MISMATCH_IN_THE_NUMBER_OF_BROADCASTING_ELEMENTS);
if (instr->op_elements == 2 && broadflags != 0x10 && broadflags != 0)
EmitError(MISMATCH_IN_THE_NUMBER_OF_BROADCASTING_ELEMENTS);
if (instr->op_elements == 1 && broadflags != 0x00)
EmitError(MISMATCH_IN_THE_NUMBER_OF_BROADCASTING_ELEMENTS);
if (broadflags != 0 && (instr->evexflags & EVEX_BRD) == 0)
EmitError(BROADCAST_DECORATORS_NOT_ALLOWED_FOR_THIS_INSTRUCTION);
if (broadflags != 0)
EVEXbr = 1;
if ((instr->evexflags & EVEX_MASK) == 0 && (EVEXaaa != 0))
EmitError(EVEX_DECORATOR_NOT_ALLOWED);
if ((instr->evexflags & EVEX_Z) == 0 && (EVEXz == 1))
EmitError(Z_MASK_NOT_PERMITTED_WHEN_FIRST_OPERATOR_IS_MEMORY);
/* EVEX.vvvv */
if ((instr->vexflags & VEX_NDS) != 0)
{
EVEXvvvv = GetRegisterNo(opnd[1].base_reg);
/* EVEX.V' */
if (GetRegisterNo(opnd[1].base_reg) > 15)
EVEXnv = 0;
}
else if ((instr->vexflags & VEX_DDS) != 0)
{
EVEXvvvv = GetRegisterNo(opnd[2].base_reg);
/* EVEX.V' */
if (GetRegisterNo(opnd[2].base_reg) > 15)
EVEXnv = 0;
}
EVEXvvvv = ~EVEXvvvv;
/* VSIB extension into V' */
if ((instr->evexflags & EVEX_VSIB) != 0)
{
if ((opnd[instr->memOpnd].idx_reg && GetRegisterNo(opnd[instr->memOpnd].idx_reg) > 15) ||
(opnd[instr->memOpnd].base_reg && GetRegisterNo(opnd[instr->memOpnd].base_reg) > 15))
{
EVEXnv = 0;
}
else
EVEXnv = 1;
if ((opnd[instr->memOpnd].idx_reg && GetRegisterNo(opnd[instr->memOpnd].idx_reg) > 23) ||
(opnd[instr->memOpnd].base_reg && GetRegisterNo(opnd[instr->memOpnd].base_reg) > 23))
{
EVEXx = 0;
}
else
EVEXx = 1;
}
/* EVEX.L and L' fields */
if (instr->op_size == 16)
EVEXl = 0;
else if (instr->op_size == 32)
EVEXl = 1;
else if (instr->op_size == 64)
{
EVEXl = 0;
EVEXnl = 0;
}
EVEXnl = ~EVEXnl;
/* {static rounding} */
if (CodeInfo->evex_sae != 0)
{
if ((instr->evexflags & EVEX_SAE) != 0)
{
if (CodeInfo->evex_sae > 0x10)
EmitError(EMBEDDED_ROUNDING_IS_AVAILABLE_ONLY_WITH_REG_REG_OP);
}
else if ((instr->evexflags & EVEX_RND) != 0)
{
if (CodeInfo->evex_sae == 0x10)
EmitError(EMBEDDED_ROUNDING_IS_AVAILABLE_ONLY_WITH_REG_REG_OP);
else if ((CodeInfo->opnd[OPND1].type & OP_M_ANY) || (CodeInfo->opnd[OPND2].type & OP_M_ANY) ||
(CodeInfo->opnd[OPND3].type & OP_M_ANY))
EmitError(EMBEDDED_ROUNDING_IS_AVAILABLE_ONLY_WITH_REG_REG_OP);
}
switch (CodeInfo->evex_sae)
{
case 0x10: /* sae */
case 0x20: /* rn-sae */
{
EVEXnl = 0;
EVEXl = 0;
EVEXbr = 1;
break;
}
case 0x40: /* rd-sae */
{
EVEXnl = 0;
EVEXl = 1;
EVEXbr = 1;